Organic Compounds – those containing C (typically H, O and N as well)

Vitalism- belief in a life force outside the jurisdiction of chemical/physical laws

Early 19th century organic chemistry believed only living organisms could produce organic compounds

Mechanism- belief that all natural phenomena are governed by physical & chemical laws

Carbon

- atomic number #6; 4 valence electrons
- readily bonds with other C atoms forming straight chains, branched chains or rings

Hydrocarbons – molecules containing only C and H

- -- fossil fuels
- -- fats have hydrocarbon chains

Isomers – compounds with the same molecular formula but with very different structures and properties

3 Types of Isomers:

1. Structural – isomers differ in the covalent arrangement of their atoms

2. Geometric - share same covalent partnerships, but differ in their spatial arrangements

3. Enatiomers – mirror images of each other

Functional Groups

- I. Hydroxyl group (--OH) called alcohols, polar, water soluble
- II. Carbonyl group (--CO) found in sugars, polar, water soluble
- III. Carboxyl group (--COOH) called carboxylic acids, donates protons, polar, water soluble
- IV. Amino group (--NH2) called amines, polar, weak base, water soluble
- V. Sulfhydryl group (--SH) called thiols, proteins
- VI. Phosphate group (H3PO4) loses protons, acid properties, polar, water soluble
- VII. Methyl group (--CH3) nonpolar, hydrophobic
- Polymer large molecule consisting of many identical or similar subunits connected together
- Monomer subunit or building block
- Macromolecule large organic polymer
- Most polymerization reactions in living organisms are <u>condensation</u> reactions (dehydration synthesis) requires energy.
- Hydrolysis a reaction that breaks the covalent bonds between monomers by adding water molecules.

Four Groups of Organic Compounds:

- 1. Carbohydrates sugars & starches C(H2O)_n
 - A. Monosaccharides single or simple sugars (glucose, galactose, fructose)
 - -- can be burned (oxidized) to yield CO2, H2O and energy
 - -- glucose (principle source of energy in living things)
 - B. <u>Disaccharide</u> a two unit or double sugar joined by a glycosidic linkage
- Glycosidic linkage covalent bond formed by a condensation reaction between two sugar monomers

Disaccharide	Monomers	INFO
Maltose	glucose + glucose	brewing beer
Lactose	glucose + galactose	present in milk
Sucrose	glucose + fructose	table sugar; transport
		form in plants

- C. <u>Polysaccharide</u> macromolecules that are polymers of a few hundred or thousand monosaccharides (starch, glycogen, cellulose, pectin and chitin)
 - ✓ Starch storage polysaccharide in plants
 Two common types:
 - 1. Amylose the simplest starch, unbranched chains of glucose
 - 2. Amylopectin large molecule with branched glucose chains
 - ✓ Glycogen "animal starch"
 - ✓ Cellulose plant cell walls, cannot be digested by most organisms
 - ✓ Pectin extracted from algae, used in jelly
 - ✓ Chitin forms the exoskeletons of insects & other arthropods
- 2. Lipids hydrophobic (fats, phospholipids, steroids & waxes)
- 3 Major Roles: store energy, form biological membranes and used as chemical messengers

Triglycerides: Fats & oils (2) fatty acids + glycerol head)

- □ Saturated solid at room temp, no double bonds, most animal fats (bacon, lard, butter)
- □ Unsaturated oily liquids, double bond (olive oil, peanut oil, corn oil)
- □ Polyunsaturated have more than 1 double bond

Phospholipids: □□Cell Membranes□□
(2 fatty acids, phosphate group and glycerol head)
Cluster in water → forms a micelle

Steroids: 4 linked carbon rings (lanolin, cholesterol)

<u>Waxes</u>: help conserve water. Insects have waxy cuticles, leaves have wax, fruit skins