Photosynthesis Worksheet Ch6 BI

 

Photosynthesis

 

Section 6-1 Capturing Light Energy

1. All organisms require ___________________ to carry out their life functions.

2. ___________________ is the ultimate energy for all life on earth.

3. During photosynthesis, the energy from the sun is stored within _____________________

compounds, mainly the sugar _______________________.

4. What organisms can carry on photosynthesis?

5. Name several autotrophic organisms.

6. What is a biochemical pathway and give an example?

7. What gas is used by autotrophs & what gas is produced?

8. What organisms release stored energy from organic compounds through cellular respiration?

9. Draw the diagram showing energy storage & transfer between autotrophs & heterotrophs. (Figure 6.1)

10. What are the light reactions of plants and in what organelle do they occur?

11. Draw & label the parts of a chloroplast. Tell the function of each labeled part.

12. Flattened sacs in chloroplasts are known as ____________________ and are

_______________________ to each other.

13. Thylakoid sacs in chloroplasts are called _____________________________.

14. What gel-like solution surrounds the thylakoids inside the chloroplast?

15. What is the visible spectrum?

16. Name the 7 colors that make up the visible spectrum.

17. What 3 things can happen to light that strikes an object?

18. What are pigments & what is their function in plants?

19. Is red light reflected or absorbed by an object if the object appears red to your eyes?

20. Name the most important chloroplast pigment & tell the 2 most important types of this pigment.

21. Only ________________________ is directly in capturing light energy.

22. Chlorophyll b is an example of an ______________________ pigment in plants.

23.Name another accessory pigment & tell what colors it includes. When could you see these colors?

24. Chlorophyll is most abundant in the _____________________ of a plant, while accessory
pigments appear more in the _________________________ and fruits.

25. The _________________________ and ________________________ pigments are grouped
into clusters in the thylakoid membrane.

26. What is a photosystem?

27. Name the 2 types of photosystems.

28. The light reactions start when __________________ pigments absorb ______________.

29. Absorbed light is passed to a pair of ________________________ pigment molecules in
photosystem ________.

30. When light energy is absorbed by chlorophyll a molecules, what happens to its electrons?

31. Once these electrons become “excited”, they have enough energy to do what?

32. What are the chemicals called that pick up these freed electrons & where are they located?

33. These electrons lose _________________ as they are passed through a series of molecules
called the ______________________________________ chain.

34. Photosystem I chlorophyll molecules also absorb ________________, and its electrons
eventually combine with ______________________ to form NADPH.

35. What would happen if the electrons lost from photosystem II weren’t replaced?

36. ________________________ provides the replacement electrons for photosystem II when
water is __________________________.

37. Write the equation for the splitting of a water molecule.

38. What important gas is released when water is split?

39. ______________ or energy for a cell is synthesized during the light reactions in a process
called ________________________________.

Section 6-2 Calvin Cycle

40. The _________________ cycle is the second set of photosynthetic reactions that uses energy
stored in ________________ and _____________________ to make __________________
compounds.

41. Carbon atoms from ______________ are “fixed” into organic compounds in the Calvin
cycle in a process called carbon _________________________.

42. In what part of the chloroplast does the Calvin cycle occur?

43. Carbon dioxide combines with _______________ to make two molecules of
_____________________________.

44. PGA is converted into ________________, ADP, _________________, and
phosphate.

45. Carbohydrates made from PGAL in the Calvin cycle include the monosaccharides
______________________ and ______________________, the disaccharide
_______________________, and polysaccharides such as _____________________,
________________________, and _______________________.

46. Write the balanced equation for photosynthesis. (See bottom of page 118.)

47. Plants that fix carbon through the Calvin cycle are called what type of plants?

48. What are stomata & where are they located?

49. When would plant cells need to close or partially close their stomata?

50. Name 2 alternate carbon-fixing pathways used by plants in hot climates.

51. Plants that close their stomata during the hottest part of the day thus fixing carbon into four
carbon compounds are called ______________________. Name three.

52. CAM plants open stomata at ______________ and close during the _________________.

53. Name 3 environmental factors that affect the rate of photosynthesis.

BACK

 

Photosynthesis & Respiration Study Guide

Photosynthesis & Cellular Respiration Study Guide

 

1. Name 3 life processes that use energy.

2. What are heterotrophs?

3. What is the ultimate energy for all life on earth?

4. What is photosynthesis?

5. Where are grana found in a chloroplast?

6. What is a biochemical pathway?

 

7. Solar energy is converted into what type of energy in photosynthesis?

8. What is the function of chlorophyll?

 

9. Name 3 things that can happen to light that strikes an object.

 

10. Explain why chlorophyll looks green.

 

11. What happens to a chlorophyll molecule that absorbs light energy?

12. What happens to the energized electrons of chlorophyll?

 

13. What is the source of oxygen produced during photosynthesis?

14. What two products of the light reactions provide energy for the Calvin cycle?

15. Can the Calvin cycle take place if light is present? if light is absent?

16. What atmospheric gas is a byproduct of photosynthesis?

17. When during photosynthesis is glucose made?

18. What are the 2 energy sources for the Calvin Cycle?

19. Where does the carbon in organic molecules come from?

20. Heterotrophs depend indirectly on _________ fro energy.

21. When food is broken down, energy is TEMPORARILY stored in what molecule?

22. All organisms use ________ as their energy molecule.

23. Oxygen produced during ___________ is used during _________________.

24. What is the effect of lactic acid on muscles?

25. When do muscles form lactic acid?

26. Glucose is split during what process?

27. Two molecules of what form from the splitting of glucose?

28. How much ATP is made from the initial splitting of glucose in the cytoplasm?

29. What is the anaerobic respiration of carbohydrates called?

30. Name the 2 main stages in cellular respiration.

31. ___________ respiration only occurs in the presence of oxygen.

32. NADPH is formed during what process?

33. NADH is formed during what process?

34. The Krebs cycle occurs in what process?

35. the Calvin cycle occurs in what process?

36. Water is the end product of what process?

37. At the end of the ETC, what gas is added to form water?

38. In cellular respiration, the most ATP is generated during the ___________.

39. What 2 energy carriers enter the ETC in cellular respiration?

40. Be able to define autotrophs & heterotrophs and to give examples of each.

Physiology of the Circulatory System

 

Physiology of the Circulatory System

Introduction:
The circulatory system functions to deliver oxygen an nutrients to tissues for growth and metabolism, and to remove metabolic wastes. The heart pumps blood through a circuit that includes arteries, arterioles, capillaries, venules, and veins. One important circuit is the pulmonary circuit, where there is an exchange of gases within the alveoli of the lung. The right side of the human heart receives deoxygenated blood from body tissues and pumps it to the lungs. The left side of the heart receives oxygenated blood from the lungs and pumps it to the tissues. With increased exercise, several changes occur within the circulatory system, thus increasing the delivery of oxygen to actively respiring muscles cells. These changes include increased heart rate, increased blood flow to muscular tissue, decreased blood flow to non muscular tissue, increased arterial pressure, increased body temperature and increased breathing rate.

Blood Pressure
An important measurable aspect of the circulatory system is blood pressure. When the ventricles of the heart contract, pressure is increased throughout all the arteries. Arterial blood pressure is directly dependent on the amount of blood pumped by the heart per minute and the resistance to blood flow through the arterioles. The arterial blood pressure is determined using a device known as a sphygmomanometer. This device consists of an inflatable cuff connected by rubber hoses to a hand pump and to a pressure gauge graduated in millimeters of mercury. The cuff is wrapped around the upper arm and inflated to a pressure that will shut off the brachial artery. The examiner listens for the sounds of blood flow in the brachial artery by placing the bell of a stethoscope in the inside of the elbow below the biceps.

Figure 10.1 The sphygmomanometer

 

At rest, the blood normally goes through the arteries so that the blood in the central part of the artery moves faster than the blood in the peripheral part. Under these conditions, the artery is silent when one listens. When the sphygmomanometer cuff is inflated to a pressure above the systolic pressure, the flow of blood is stopped and the artery is silent again. As the pressure in the cuff gradually drops to levels between the systolic and diastolic pressures of the artery, the blood is pushed through the compressed walls of the artery in a turbulent flow. Under these conditions, the blood is mixed, and the turbulence sets up vibrations in the artery that are heard as sounds in the stethoscope. These sounds are known as the heart sounds or sounds of Korotkoff. The sounds are divided into five phases based on the loudness and quality of the sounds.

  • Phase 1. A loud, clear tapping sound is evident that increases in intensity as the cuff is deflated.
  • Phase 2. A succession of murmurs can be heard. Sometimes the sounds seem to disappears during this time which may be a result of inflating or deflating the cuff too slowly.
  • Phase 3. A loud, thumping sound, similar to that in Phase 1 but less clear, replaces the murmurs.
  • Phase 4. A muffled sound abruptly replaces the thumping sounds of Phase 3.
  • Phase 5. All sounds disappear.

The cuff pressure at which the first sound is heard (that is, the beginning of Phase 1) is taken as the systolic pressure. The cuff pressure with the muffled sound(Phase 4) disappears (the beginning of Phase 5). is taken as the measurement of the diastolic pressure. A normal blood pressure measurement for a given individual depends on a person’s age, sex, heredity, and environment. When these factors are taken into account, blood pressure measurements that are chronically elevated may indicate a state deleterious to the health of the person. This condition is called hypertension and is a major contributing factor in heart disease and stroke.

Table 10.1: Normal Blood Pressure for Men and Women at Different Ages

Systolic Pressure Diastolic Pressure
Age in Years Men Women Men Women
10 103 103 69 70
11 104 104 70 71
12 106 106 71 72
13 108 108 72 73
14 110 110 73 74
15 112 112 75 76
16 118 116 73 72
17 121 116 74 72
18 120 116 74 72
19 122 115 75 71
20-24 123 116 76 72
25-29 125 117 78 74
30-34 126 120 79 75
35-39 127 124 80 78
40-44 129 127 81 80
45-49 130 131 82 82
50-54 135 137 83 84
55-59 138 139 84 84
60-64 142 144 85 85
65-69 143 154 83 85
70-74 145 159 82 85

Exercise 10A: Measuring Blood Pressure:
Note: These labs are ONLY for experimental, and not diagnostic, purposes.

A sphygmomanometer (blood pressure cuff) is used to measure blood pressure. The cuff, designed to fit around the upper arm, can be expanded by pumping a rubber bulb connected to the cuff. The pressure gauge, scaled in millimeters, indicates the pressure inside the cuff. A stethoscope is used to listen to the individual’s pulse. The ear pieces of the stethoscope should be cleaned with alcohol swabs before and after each use.

Procedure:
1. Work in pairs. Those who are to have their blood pressure measured should be seated with both shirt sleeves rolled up.

2. Attach the cuff of the sphygmomanometer snugly around the upper arm.

3. Place the stethoscope directly below the cuff in the bend of the elbow joint.

4. Close the valve of the bulb by turning it clockwise. Pump air into the cuff until the pressure gauge goes past 200 mm Hg.

5. Turn the valve of the bulb counterclockwise and slowly release the air from the cuff. Listen for pulse.

6. When you first hear the heart sounds, note the pressure on the gauge. This is the systolic pressure.

7. Continue to slowly release air and listen until the clear thumping sound of the pulse becomes strong and then fades. When you last hear the full heart beat, note the pressure. This is the diastolic pressure.

8. Repeat the measurement two more times and determine the average systolic and diastolic pressure, then record these values on the data sheet .

9. Trade places with your partner. When your average systolic and diastolic pressure have been determined, record these values on the blood pressure data sheet.

Exercise 10B: A Test of Fitness
The point scores on the following tests provide an evaluation of fitness based not only on cardiac muscular development but also on the ability of the cardiovascular system to respond to sudden changes in demand. Caution: Make sure that you do not attempt this exercise if strenuous activity will aggravate a health problem. work in pairs. Determine the fitness level for one member of the pair (Tests 1 to 5 below) and then repeat the process for the other member of the pair.

Procedure:
1. The subject should recline on a laboratory bench for at least 5 minutes. At the end of this time, measure the systolic and diastolic pressure and record these values below.

reclining systolic pressure ____________ mm Hg    reclining diastolic pressure _______ mm Hg

2. Remain reclining for two minutes, then stand and IMMEDIATELY repeat measurements on the same subject (arms down). Record these values below.

standing systolic pressure ____________ mm Hg    standing diastolic pressure _______ mm Hg

3. Determine the change in systolic pressure from reclining to standing by subtracting the standard measurement from the reclining measurement. Assign fitness points based on Table 10.2 and record the fitness data sheet.

Table 10.2: Changes in Systolic Pressure from Reclining to Standing

Change (mm Hg) Fitness Points
rise of 8 or more 3
rise of 2-7 2
no rise 1
fall of 2-5 0
fall of 6 or more -1

Cardiac Rate and Physical Fitness

During physical exertion, the cardiac rate (beats per minute) increases. This increase can be measured as an increase in pulse rate. Although the maximum cardiac rate is usually the same in people of the same age group, those who are physically fit have a higher stroke volume millimeters per beat) then more sedentary individuals. A person who is in poor physical condition, therefore, reaches their maximum cardiac rate at a lower work level than a person with of comparable age who is in better shape. Maximum cardiac rates are listed in Table 10.3. Individuals who are in good physical condition can deliver more oxygen to their muscles before reaching maximum cardiac rate than can those in poor condition.

Table 10.3: Maximum-Pulse Rate

Age (years) Maximum Pulse Rate (beats/min)
20-29 190
30-39 160
40-49 150
50-59 140
60 and above 130

Test 2: Standing Pulse Rate
Procedure:
1. The subject should stand at ease for 2 minutes after Test 1.

2. After the two minutes, determine your partner’s pulse.

3. Count the number of beats for 30 seconds and multiply by 2. The pulse rate is the number of beats per minute. Record this on the fitness data sheet. Assign fitness points based on Table 10.4 and record them on the data sheet.

Pulse Rate (beats/min) Fitness Points
60-70 3
71-80 3
81-90 2
91-100 1
101-110 1
111-120 0
121-130 0
131-140 -1

Test 3: Reclining Pulse Rate
Procedure:
1. The subject should recline for 5 minutes on the laboratory bench.

2. The other partner will determine the subject’s resting pulse.

3. Count the number of beats for 30 seconds and multiply by 2. ( Note: the subject should remain reclining for the next test!) Record it on the Data Sheet. Assign fitness points based on Table 10.5 and record them on the fitness data sheet.

Table 10.5: Reclining Pulse Rate

Pulse Rate (beats/min) Fitness Points
50-60 3
61-70 3
71-80 2
81-90 1
91-100 0
101-110 -1

Test 4: Baroreceptor Reflex (Pulse Rate Increase from Reclining to Standing)
Procedure:
1. The reclining subject should now stand up.

2. Immediately take the subject’s pulse. Record this value below. The observed increase in pulse rate is initiated by baroreceptors (pressure receptors) in the carotid artery and in the aortic arch. When the baroreceptors detect a drop in blood pressure they signal the medulla of the brain to increase the heart beat, and consequently the pulse rate.

Pulse immediately upon standing = ___________________ beats per minute

3. Subtract the reclining pulse rate (recorded in Test 3) from the pulse rate immediately upon standing (recorded in Test 4) to determine the pulse rate increase upon standing. Assign fitness points based on Table 10.6 and record on the fitness data sheet.

Table 10.6: Pulse Increase from Reclining to Standing

Reclining Pulse (beats/min)

Pulse Rate Increase on Standing (# beats)

0-10 11-18 19-26 27-34 35-43

Fitness Points

50-60 3 3 2 1 0
61-70 3 2 1 0 -1
71-80 3 2 0 -1 -2
81-90 2 1 -1 -2 -3
91-100 1 0 -2 -3 -3
101-110 0 -1 -3 -3 -3

Test 5: Step Test- Endurance
Procedure:
1. place your right foot on an 18-inch high stool. Raise your body so that your left foot comes to rest by your right foot. Return your left foot to the original position. Repeat these exercise five times, allowing three seconds for each step up.

2. Immediately after the completion of the exercise, measure the pulse for 15 seconds and record below; measure again for 15 seconds and record; continue taking the pulse and record at 60, 90, and 120 seconds.

Number of beats in the 0-to 15 second interval ____ X4= ____ beats per minute

Number of beats in the 16-to 30 second interval ____ X4= ____ beats per minute

Number of beats in the 31-to 60 second interval ____ X4= ____ beats per minute

Number of beats in the 61-to 90 second interval ____ X4= ____ beats per minute

Number of beats in the 91-to 120 second interval ____ X4= ____ beats per minute

3. Observe the time that it takes for the pulse rate to return to approximately the level as recorded in Test 2. Assign fitness pints based on Table 10.7 and record them on the fitness data sheet.

Table 10.7: Time Required for Return of Pulse Rate to Standing Level after Exercise

Time (seconds) Fitness Points
0-30 4
31-60 3
61-90 2
91-120 1
121+ 1
1-10 beats above standing pulse rate 0
11-30 beats above standing pulse rate -1

4. Subtract your normal standing pulse rate (recorded in Test 2) from your pulse rate immediately after exercise (the 0-to 15-second interval) to obtain pulse rate increase. Record this on the data sheet. Assign fitness points based on Table 10.8 and record them on the fitness data sheet.

Standing Pulse (beats/min)

Pulse Rate Increase Immediately after Exercise (#beats)

0-10 11-20 21-30 31-40 41+

Fitness Points

60-70 3 3 2 1 0
71-80 3 2 1 0 -1
81-90 3 2 1 -1 -2
91-100 2 1 0 -2 -3
101-110 1 0 -1 -3 -3
111-120 1 -1 -2 -3 -3
121-130 0 -2 -3 -3 -3
131-140 0 -3 -3 -3 -3

Data Sheet:

Blood Pressure Data

Measurement 1 2 3 Average
Systolic
Diastolic

Fitness Data

Measurement Points
Test 1. Change in systolic pressure from reclining to standing           mm Hg
Test 2. Standing Pulse Rate           beats/min
Test 3. Reclining Pulse Rate          beats/min
Test 4. Baroreceptor reflex Pulse Rate increase on standing          beats/min
Test 5. Return of Pulse Rate to Standing after Exercise           seconds
Pulse Rate increase immediately after exercise           beats/min
Total Score

 

Total Score Relative Cardiac Fitness
18-17 Excellent
16-14 Good
13-8 Fair
7 or less Poor

Topics for Discussion:
1. Explain why blood pressure and heart rate differ when measured in a reclining position and in a standing position.

___________________________________________________________________

___________________________________________________________________

___________________________________________________________________

___________________________________________________________________

___________________________________________________________________

___________________________________________________________________

2. Explain why high blood pressure is a health concern.

___________________________________________________________________

___________________________________________________________________

___________________________________________________________________

___________________________________________________________________

___________________________________________________________________

___________________________________________________________________

3. Explain why an athlete must exercise harder or longer to achieve a maximum heart rate than a person who is not as physically fit.

___________________________________________________________________

___________________________________________________________________

___________________________________________________________________

___________________________________________________________________

___________________________________________________________________

___________________________________________________________________

4. Research and explain why smoking causes a rise in blood pressure.

___________________________________________________________________

___________________________________________________________________

___________________________________________________________________

___________________________________________________________________

___________________________________________________________________

___________________________________________________________________

Pedigree Lab

Constructing a Pedigree

Introduction

A pedigree is a special chart or family tree that uses a particular set of standardized symbols. Pedigrees are used to show the history of inherited traits through a family. In a pedigree, males are represented by squares and females by circles . An individual who exhibits the trait in question, for example, someone who suffers from hemophilia, is represented by a filled symbol or . A horizontal line between two symbols represents a mating . The offspring are connected to each other by a horizontal line above the symbols and to the parents by vertical lines. Roman numerals (I, II, III, etc.) symbolize generations. Arabic numerals (1,2,3, etc.) symbolize birth order within each generation. In this way, any individual within the pedigree can be identified by the combination of two numbers (i.e., individual II3).

Objective

Inherited traits can be traced through a family’s history by constructing a pedigree chart.

Materials

Large sheet of paper or poster board
Markers
Ruler
Protractor

Procedure
Part 1

1.      Examine Figure 1 that traces the ability to roll your tongue through three generations in a family. Remember: Blackened circles show the trait and circles are females and squares are male.

2.    Determine which parents and which offspring would be able to roll their tongue.  

FIGURE 1

 

Part 2

3.    Read the Passage 1 about the Smith family and their inherited trait of dimples.

4.    After reading the passage, construct a pedigree showing all family members in each generation that does and does NOT have dimples.

5.    Once the pedigree is constructed, write the correct genotype by each person in the family.

 

Passage 1

Grandfather and Grandmother Smith smiled a lot and showed off their dimples each time. They had a son named John, who had dimples, and daughter named Julie, who did not. Julie died at an early age, but her brother John Smith met and married Mary Jones because she had the most beautiful dimples when she smiled. They had 5 children, 2 boys and 3 girls. Only one of their sons, Tom, had dimples, but both girls, Judy and Kay, had dimpled smiles. Their sister June lacked dimples. After college, Tom met and married Jane Kennedy who also had dimples. They had 3 children, all girls, who shared their parent’s dimpled smile. Tom’s sister Kay married a lawyer named James who seldom smiled and didn’t have dimples. Their only son Matthew was like his mother when he smiled. Judy never married. Tom’s sister, June, married a doctor and had 5 children. Three of the children were boys, Jay, Fred, and Mike. Mike and Fred had dimples like dad, but Jay’s smile was like his mom’s lacking dimples. One sister, Susan, had dimples, but the other, Katherine, didn’t.

 

Questions

1.      What type of information does a pedigree contain?

2.    How do you show the presence of a trait in a pedigree?

3.    How do you denote males & females in a pedigree?

4.    From your pedigree, is the presence of dimples a dominant or recessive trait?

5.     How could examining a family pedigree be helpful to a couple wanting to have children?