AP Lecture Guide 25 – Phylogeny and Systematics

 

 

AP Biology: CHAPTER 25: PHYLOGENY AND SYSTEMATICS

 

1. What is phylogeny?

__________________________________________________________________________

__________________________________________________________________________

2. How are fossils significant to our study of biology?

__________________________________________________________________________

__________________________________________________________________________

3. Review these key points in the study of fossils:

a. Sedimentary rocks are the richest source of fossils.

__________________________________________________________________________

__________________________________________________________________________

b. Paleontologists use a variety of methods to date fossils.

__________________________________________________________________________

__________________________________________________________________________

c. The fossil record is a substantial, but incomplete, chronicle of evolutionary history.

__________________________________________________________________________

__________________________________________________________________________

d. Phylogeny has a biogeographic basis in continental drift.

__________________________________________________________________________

__________________________________________________________________________

e. The history of life is punctuated by mass extinctions.

__________________________________________________________________________

__________________________________________________________________________

4. List examples of fossils. ______________________________________________________

__________________________________________________________________________

__________________________________________________________________________

5. What techniques do relative dating use to place fossils in their place in geologic time?

__________________________________________________________________________

__________________________________________________________________________

6. What marks the separation between the major eras in the geologic time scale?

__________________________________________________________________________

__________________________________________________________________________

7. How does absolute dating compare to relative dating?

__________________________________________________________________________

__________________________________________________________________________

8. Describe the two main characteristics of the Linnaean system of classification.

a. _______________________________________________________________________

b. _______________________________________________________________________

9. What modern techniques are used as the basis for grouping creatures with modern

phylogenetic systematics?

__________________________________________________________________________

__________________________________________________________________________

10. What does a phylogenic tree show?

__________________________________________________________________________

__________________________________________________________________________

11. When classifying organisms in a cladistic diagram, identify three pitfalls scientists might

encounter classifying creatures.

a. _______________________________________________________________________

b. _______________________________________________________________________

c. _______________________________________________________________________

12. What do scientists use when placing an organism on a cladistic diagram?

__________________________________________________________________________

__________________________________________________________________________

13. How have molecular clocks influenced our thoughts on evolutionary paths?

__________________________________________________________________________

__________________________________________________________________________

14. Why is the four chamber heart a poor choice of structure to place creatures on a phylogenic

tree?

__________________________________________________________________________

__________________________________________________________________________

15. Why are crocodiles now thought to be closer to birds than other reptiles?

__________________________________________________________________________

__________________________________________________________________________

 

AP Genetics Problems

 

Genetics Problems

1. A rooster with gray feathers is mated with a hen of the same phenotype. Among their offspring, 15 chicks are gray, 6 are black, and 8 are white.

  • What is the simplest explanation for the inheritance of these colors in chickens?
  • What offspring would you predict from the mating of a gray rooster and a black hen?

2. In some plants, a true-breeding, red-flowered strain gives all pink flowers when crossed with a white-flowered strain: RR (red) x rr (white) —> Rr (pink). If flower position (axial or terminal) is inherited as it is in peas what will be the ratios of genotypes and phenotypes of the generation resulting from the following cross: axial-red (true-breeding) x terminal-white? What will be the ratios in the F2 generation?

3. Flower position, stem length, and seed shape were three characters that Mendel studied. Each is controlled by an independently assorting gene and has dominant and recessive expression as follows:

 

Character Dominant Recessive
Flower position Axial (A ) Terminal (a )
Stem length Tall (T ) Dwarf (t )
Seed shape Round (R ) Wrinkled (r)

 

If a plant that is heterozygous for all three characters were allowed to self-fertilize, what proportion of the offspring would be expected to be as follows: (Note – use the rules of probability (and show your work) instead of huge Punnett squares)

  1. homozygous for the three dominant traits
  2. homozygous for the three recessive traits
  3. heterozygous
  4. homozygous for axial and tall, heterozygous for seed shape

4. A black guinea pig crossed with an albino guinea pig produced 12 black offspring. When the albino was crossed with a second one, 7 blacks and 5 albinos were obtained.

  • What is the best explanation for this genetic situation?
  • Write genotypes for the parents, gametes, and offspring.

5. In sesame plants, the one-pod condition (P ) is dominant to the three-pod condition (p ), and normal leaf (L ) is dominant to wrinkled leaf (l) . Pod type and leaf type are inherited independently. Determine the genotypes for the two parents for all possible matings producing the following offspring:

  1. 318 one-pod normal, 98 one-pod wrinkled
  2. 323 three-pod normal, 106 three-pod wrinkled
  3. 401 one-pod normal
  4. 150 one-pod normal, 147 one-pod wrinkled, 51 three-pod normal, 48 three-pod wrinkled
  5. 223 one-pod normal, 72 one-pod wrinkled, 76 three-pod normal, 27 three-pod wrinkled

6. A man with group A blood marries a woman with group B blood. Their child has group O blood.

  • What are the genotypes of these individuals?
  • What other genotypes and in what frequencies, would you expect in offspring from this marriage?

7. Color pattern in a species of duck is determined by one gene with three alleles. Alleles H and I are codominant, and allele i is recessive to both. How many phenotypes are possible in a flock of ducks that contains all the possible combinations of these three alleles?

8. Phenylketonuria (PKU) is an inherited disease caused by a recessive allele. If a woman and her husband are both carriers, what is the probability of each of the following?

  1. all three of their children will be of normal phenotype
  2. one or more of the three children will have the disease
  3. all three children will have the disease
  4. at least one child out of three will be phenotypically normal

(Note: Remember that the probabilities of all possible outcomes always add up to 1)

9. The genotype of F1 individuals in a tetrahybrid cross is AaBbCcDd. Assuming independent assortment of these four genes, what are the probabilities that F2 offspring would have the following genotypes?

  1. aabbccdd
  2. AaBbCcDd
  3. AABBCCDD
  4. AaBBccDd
  5. AaBBCCdd

10. In 1981, a stray black cat with unusual rounded curled-back ears was adopted by a family in California. Hundreds of descendants of the cat have since been born, and cat fanciers hope to develop the “curl” cat into a show breed. Suppose you owned the first curl cat and wanted to develop a true breeding variety.

  • How would you determine whether the curl allele is dominant or recessive?
  • How would you select for true-breeding cats?
  • How would you know they are true-breeding?

11. What is the probability that each of the following pairs of parents will produce the indicated offspring (assume independent assortment of all gene pairs?

  1. AABbCc x aabbcc —-> AaBbCc
  2. AABbCc x AaBbCc —–> AAbbCC
  3. AaBbCc x AaBbCc —–> AaBbCc
  4. aaBbCC x AABbcc —-> AaBbCc

12. Karen and Steve each have a sibling with sickle-cell disease. Neither Karen, Steve, nor any of their parents has the disease, and none of them has been tested to reveal sickle-cell trait. Based on this incomplete information, calculate the probability that if this couple should have another child, the child will have sickle-cell anemia.

13. Imagine that a newly discovered, recessively inherited disease is expressed only in individuals with type O blood, although the disease and blood group are independently inherited. A normal man with type A blood and a normal woman with type B blood have already had one child with the disease. The woman is now pregnant for a second time. What is the probability that the second child will also have the disease? Assume both parents are heterozygous for the “disease” gene.

14. In tigers, a recessive allele causes an absence of fur pigmentation (a “white tiger”) and a cross-eyed condition. If two phenotypically normal tigers that are heterozygous at this locus are mated, what percentage of their offspring will be cross-eyed? What percentage will be white?

15. In corn plants, a dominant allele I inhibits kernel color, while the recessive allele i permits color when homozygous. At a different locus, the dominant gene P causes purple kernel color, while the homozygous recessive genotype pp causes red kernels. If plants heterozygous at both loci are crossed, what will be the phenotypic ratio of the F1 generation?

16. The pedigree below traces the inheritance of alkaptonuria, a biochemical disorder. Affected individuals, indicated here by the filled-in circles and squares, are unable to break down a substance called alkapton, which colors the urine and stains body tissues. Does alkaptonuria appear to be caused by a dominant or recessive allele? Fill in the genotypes of the individuals whose genotypes you know. What genotypes are possible for each of the other individuals?

 
17. A man has six fingers on each hand and six toes on each foot. His wife and their daughter have the normal number of digits (5). Extra digits is a dominant trait. What fraction of this couple’s children would be expected to have extra digits?

18. Imagine you are a genetic counselor, and a couple planning to start a family came to you for information. Charles was married once before, and he and his first wife had a child who has cystic fibrosis. The brother of his current wife Elaine died of cystic fibrosis. What is the probability that Charles and Elaine will have a baby with cystic fibrosis? (Neither Charles nor Elaine has the disease)

19. In mice, black color (B ) is dominant to white (b ). At a different locus, a dominant allele (A ) produces a band of yellow just below the tip of each hair in mice with black fur. This gives a frosted appearance known as agouti. Expression of the recessive allele (a ) results in a solid coat color. If mice that are heterozygous at both loci are crossed, what will be the expected phenotypic ratio of their offspring?

20. The pedigree below traces the inheritance of a vary rare biochemical disorder in humans. Affected individuals are indicated by filled-in circles and squares. Is the allele for this disorder dominant or recessive? What genotypes are possible for the individuals marked 1, 2, and 3.

 

 

Solutions

Virus Worksheet

 

  Viruses Worksheet   

Structure of Viruses

1. Are viruses living or nonliving?

2. How can viruses be useful?

 

3. What odes a virologist do for a living?

 

4. Construct a Venn diagram comparing viruses and cells.

 

 

 

 

 

 

 

5. Explain how viruses were discovered and by whom.

 

 

6. Compare the size of viruses, bacteria, and eukaryotic cells.

 

 

7. What must be true for viruses to be able to replicate?

 

8. Name the two main parts of all viruses.

 

9. Discuss the hereditary material of viruses.

 

 

10. Compare & contrast capsids and envelopes of viruses.

 

 

11. Name 2 enveloped viruses that cause sexually transmitted disease.

12. What type of virus causes flu?

13. Where are glycoproteins found & what is there purpose?

 

14. What characteristics are used to group viruses?

 

15. How are these viruses grouped — retrovirus, adenovirus, and herpes virus?

 

 

16. Compare & contrast helical & icosahedral viral shapes & diseases.

 

 

17. Explain how RNA viruses replicate.

 

 

18. Do viruses contain enzymes? Explain.

 

19. Compare 7 contrast viroids & prions by constructing a Venn diagram.

 

 

 

 

 

 

Viral Replication

20. Why are viruses considered to be obligate intracellular parasites?

 

21. What is the best known bacteriophage, and what virus does it attack?

 

22. Sketch & label a bacteriophage and tell the function of each labeled part.

 

 

 

 

 

23. Name the steps of the lytic cycle & tell what happens to the host cell & virus at each stage.

 

 

 

 

 

24. What are temperate phages and how do they affect a cell?

 

 

25. Name the steps of the lysogenic cycle & tell what happens to the host cell & virus at each stage.

 

 

 

 

26. How does a prophage form?

 

27.Name a sexually transmitted virus that uses the lysogenic cycle to attack host cells.

28. Why is the influenza virus so hard to combat?

 

Viruses & Human Disease

29. Name some of the most common viral disease that attack humans.

 

30. How are shingles & chickenpox alike? How are they different?

 

31.What two methods are used to control viral diseases?

 

32. What is the CDC and what is its job?

 

33.What eradication program did the World Health Organization undertake in 1967, and what were the results?

 

34. What virus do we vaccinate our pets against each year?

35. How does AZT work?

 

36. What drugs prevent viruses from making capsids?

37. Why is rain forest clearing dangerous to humans?

 

38. Some lysogenic viruses can trigger certain types of _________________.

 


BACK

Antibiotic Resistant Lab

Antibiotic resistance of bacteria

Procedure Using a sterile loop, pick an isolated colony from you bacterial plate. Try to find one that grew well but is all by itself. Move the colony (don’t scoop up the agar) to a new plate. Using a moist, sterile, cotton swab, spread the bacteria around on the plate.

The goal is to get an complete, even, coverage of bacterial growth on the plate (called a “lawn”). Remember to open the plate only minimally, using the lid as an “umbrella” to prevent contamination (see image below). Label each plate on the bottom (agar contaning side) and store it for examination during next week’s lab.Each new prepared plate will receive four paper discs containing antibiotics. We will be using several different types of Antibiotics and/or antimicrobials.

(please fill in which antibiotics you used below)

  • 1
  • 2
  • 3
  • 4

The antibiotic discs come in a little tube-like dispenser. To remove the discs take a sterile toothpick and push out a disc into your plate. Use the toothpick to gently press the disc onto the agar. Once you have added the five antibiotic discs to your plates, make sure the plates are labelled and store them in the back of the lab until next week.

If the bacteria are susceptible to the antibiotic a zone of inhibited growth will be evident next week. Measuring the size of this zone is a relative indication of the effect of the antibiotic on the particular bacteria.

Bacteria possess several characteristics that enable them to become resistant to antimicrobial drugs:

  • Asexual reproduction
  • Short generation times
  • High mutation rates

Some Information on Antibiotics

Questions

1. Name two ways (1. and 2. ) that common human practices towards antimicrobials aids bacteria in becoming resistant.

 

2. Name two reasons your Physician will perform cultures such as the ones you have done in this lab.

 

 

4. How are materials are collected for cultures?

 

 

5. Why is neccesary to use sterile technique when obtaining cultures?