Genetic Problems Solutions Campbell Ch14

 

Genetics Problems Campbell
1. A man with hemophilia (a recessive , sex-linked condition has a daughter of normal phenotype. She marries a man who is normal for the trait. What is the probability that a daughter of this mating will be a hemophiliac? A son? If the couple has four sons, what is the probability that all four will be born with hemophilia?

Solution

 

2. Pseudohypertropic muscular dystrophy is a disorder that causes gradual deterioration of the muscles. It is seen only in boys born to apparently normal parents and usually results in death in the early teens. (a) Is pseudohypertrophic muscular dystrophy caused by a dominant or recessive allele? (b) Is its inheritance sex-linked or autosomal? (c) How do you know? Explain why this disorder is always seen in boys and never girls.

Solution

3. Red-green color blindness is caused by a sex-linked recessive allele. A color-blind man marries a woman with normal vision whose father was color-blind. (a) What is the probability that they will have a color-blind daughter? (b) What is the probability that their first son will be color-blind? (Note: the two questions are worded a bit differently.)

Solution

4. A wild-type fruit fly (heterozygous for gray body color and normal wings was mated with a black fly with vestigial wings. The offspring had the following phenotypic distribution: wild type, 778; black-vestigial, 785; black-normal, 158; gray-vestigial, 162. What is the recombination frequency between these genes for body color and wing type.

Solution

5. In another cross, a wild-type fruit fly (heterozygous for gray body color and red eyes) was mated with a black fruit fly with purple eyes. The offspring were as follows: wild-type, 721; black-purple, 751; gray-purple, 49; black-red, 45. (a) What is the recombination frequency between these genes for body color and eye color? (b) Following up on this problem and problem 4, what fruit flies (genotypes and phenotypes) would you mate to determine the sequence of the body color, wing shape, and eye color genes on the chromosomes?

Solution

6. A space probe discovers a planet inhabited by creatures who reproduce with the same hereditary patterns as those in humans. Three phenotypic characters are height (T = tall, t = dwarf), hearing appendages (A = antennae, a = no antennae), and nose morphology (S = upturned snout, s = downturned snout). Since the creatures were not “intelligent” Earth scientists were able to do some controlled breeding experiments, using various heterozygotes in testcrosses. For a tall heterozygote with antennae, the offspring were tall-antennae, 46; dwarf-antennae 7; dwarf-no antennae 42; tall-no antennae 5. For a heterozygote with antennae and an upturned snout, the offspring were antennae-upturned snout 47; antennae-downturned snout, 2; no antennae-downturned snout, 48: no antennae-upturned snout 3. Calculate the recombination frequencies for both experiments.

Solution

7. Using the information from problem 6, a further testcross was done using a heterozygote for height and nose morphology. The offspring were tall-upturned nose, 40; dwarf-upturned nose, 9; dwarf-downturned nose, 42; tall-downturned nose, 9. Calculate the recombination frequency from these data; then use your answer from problem 6 to determine the correct sequence of the three linked genes.

Solution

8. Imagine that a geneticist has identified two disorders that appear to be caused by the same chromosomal defect and are affected by genomic imprinting: blindness and numbness of the limbs. A blind woman (whose mother suffered from numbness) has four children, two of whom, a son and daughter, have inherited the chromosomal defect. If this defect works like Prader-Willi and Angelman syndromes, what disorders do this son and daughter display? What disorders would be seen in their sons and daughters?

Solution

9. What pattern of inheritance would lead a geneticist to suspect that an inherited disorder of cell metabolism is due to a defective mitochondrial gene?

Solution

10. An aneuploid person is obviously female, but her cells have two Barr bodies. what is the probable complement of sex chromosomes in this individual?

Solution

11. Determine the sequence of genes along a chromosome based on the following recombination frequencies: A-B, 8 map units; A-C, 28 map units; A-D, 25 map units; B-C , 20 map units; B-D, 33 map units.

Solution

12. About 5% of individuals with Downs syndrome are the result of chromosomal translocation. In most of these cases, one copy of chromosome 21 becomes attached to chromosome 14. How does this translocation lead to children with Down syndrome?

Solution

13. Assume genes A and B are linked and are 50 map units apart. An individual heterozygous at both loci is crossed with an individual who is homozygous recessive at both loci. (a) What percentage of the offspring will show phenotypes resulting from crossovers? (b) If you did not know genes A and B were linked, how would you interpret the results of this cross?

Solution

14. In Drosophila, the gene for white eyes and the gene that produces “hairy” wings have both been mapped to the same chromosome and have a crossover frequency of 1.5%. A geneticist doing some crosses involving these two mutant characteristics noticed that in a particular stock of flies, these two genes assorted independently; that is they behaved as though they were on different chromosomes. What explanation can you offer for this observation?

Solution

 

BACK

1st Semester Test Review 2004-05

 

First Semester Review  2004-05      

 

What are the smallest units that can carry on life functions called?
Living things are composed of ______________.
Give an example of a scientific observation.
What is a hypothesis?
What 3 things compose an atom?
Matter is made of ________________.
When atoms gain energy, what happens to electrons?
Do  cells contain a few or thousands of different kinds of enzymes?
__________________ reactions are important in organisms because they allow the passage of energy from one molecule to another.
What is a polar molecule?
Water molecules break up other polar substances. Give an example of such a polar molecule.
What happens to ionic compounds in water?
Which is not a carbohydrate —– glycogen, steroids, cellulose, or sugars?
Amino acids are the monomers for making ________________.
Is ice an example of an organic molecule?
The type & order of the amino acids determines the ___________ of a protein.
Very active cells need more of which organelle?
What organelle is the packaging & distribution center of the cell?
What membrane surrounds the nucleus?
What is the function of mitochondria. Sketch their shape.
Where is chlorophyll found in plants?
Diffusion takes place from ________________ concentration to ___________.
If a cell has a high water content, will it lose or gain water?
Ink dispersing in a beaker is an example of ________________.
Very large molecules enter cells by a process called ________________.
Endocytosis and exocytosis occur in ______________ directions across a cell membrane.
What is photosynthesis?
Where do the dark reactions of photosynthesis take place?
When chlorophyll absorbs light energy ATP is made and what other energy carrying molecule?
When chlorophyll absorbs light energy, what happens to its electrons?
_______________ molecules are responsible for the photosystems.
Electrons that have absorbed energy & moved to a higher energy level enter what chain?
When cells break down food molecules, energy is temporarily stored in what molecule?
When muscles do not get enough oxygen, what acid forms during exercise?
If you are growing bacteria in a culture and lactic acids starts to form, the bacteria are not getting enough of what gas?
The 2 stages of cellular respiration are _____________ & oxidative respiration.
Citric acid forms in which cycle during cellular respiration?
ATP molecules are formed inside what cellular organelle?
What is the study of life called?

 

2006 1st Semester Test Guide

First Semester Test 2006 Study Guide

 

1. What is the study of life called?

2. Instructions for traits passed from parent to offspring?

3. Keeping things stable or the same in cells?

4. Smallest units that can carry on life?

5. All living things require _________ for metabolism.

6. All living things are made of __________.

7. Salamanders with curved tails in polluted water are an example of which part of the scientific method?

8. The smallest part of carbon with all the same properties is called?

9. Where are electrons found in an atom & what is their charge?

 

10. When electrons gain energy they move to _____________________.

11. How many covalent bonds can carbon form?

12. Compounds may form from the transfer or __________ of electrons.

13. What happens to ionic compounds when placed in water?

 

14. Ionic bonds form from the ____________ of electrons.

15. Covalent bonds form from the ___________ of electrons.

16. What element do all organic compounds contain?

17. Give several examples of carbohydrates.

 

 

18. In what from do animals store glucose?

19. What are the monomers for proteins?

20. Is the following model a carbohydrate, lipid, or protein?

21. Sketch a fatty acid chain found in lipids.

22. What type of fatty acids contains double bonds?

23. Name the 2 nucleic acids.

24. When the volume of a cell increases, what happens to the surface area?

 

 

25. How does a prokaryotic cell differ from a eukaryotic cell?

 

 

26. What’s the job of the plasma membrane?

 

27. Parts of cells performing specific functions are called?

28. The ER sends proteins & lipids it makes to the __________ to be modified.

29. The Golgi ships & receives cell products in transport ___________.

30. In what organelle is ATP produced?

31. Ribosomes make ____________.

32. All eukaryotic cells have a ___________ containing the genetic material.

33. Diffusion occurs in what direction?

34. What is osmosis?

35. Ink dissolving in water is an example of _____________.

36. Riding of cell wastes in sacs is called _____________.

37. What is the effect of placing a plant into a hypertonic solution?

 

38. What is the ultimate energy for life on Earth?

39. Grana are suspended in the _________ of chloroplasts.

40. ____________ absorbs light energy for plants.

41. What happens to chlorophyll’s electrons when they absorb sunlight?

42. What is the source of oxygen in photosynthesis?

43. What gas is a byproduct of photosynthesis?

44. What type of skeleton do insects have?

45. The Calvin cycle occurs in what process?

46. The breaking down of food to release energy is called?

47. __________ builds up in heavily exercised muscles.

48. Name the 3 parts of cellular respiration.

 

49. How many chromosomes are in a human egg or sperm cell?

50. DNA compacts itself by wrapping around ____________.

51. How do insects help crops?

 

Writing Lab Notebook Reports

REVISED LAB REPORTS

LAB REPORT RUBRICS

General Instructions:

  1. All labs must be written in pencil and be submitted to the teacher in a spiral notebook.
  2. Always use third person (NO personal pronouns — me, I, you, we, etc.) when writing all parts of a lab report. (USE HE, SHE, THEY, THEIR, THEM, ETC.
  3. The following things should be written clearly in marker on the front cover — “Subject” Lab Notebook, teacher name, student name, period.
  4. Number each page of the spiral notebook in the lower right hand corner.
  5. On Page 1, write the subject, year, student name, class period, and teacher name.
  6. Page 2 should have “Table of Contents” written at the top and two columns, one for “Page” and the other for “Lab Title”.
  7. Begin writing the first lab on page 3 of you notebook. DO NOT WRITE ON THE BACK OF YOUR PAPER!
  8. SKIP A LINE BETWEEN EVERY SECTION!
  9. TITLE and UNDERLINE each section & then begin writing on the NEXT LINE!

Your lab report should be written using the following format: (Be sure to left align & underline headings)

Title (center on top line; on the right of line 2, put date & lab #)
The title should indicate clearly & concisely the subject and scope of the report.

Introduction – 20 points (PARAGRAPH FORM)

  • The introduction should give background information about the experiment.
  • It should also state the purpose of the investigation.
  • This section will be two or more paragraphs in length.

Hypothesis – 20 points (SINGLE SENTENCE)

  • The hypothesis should be a single statement telling the exact thing you are trying to prove in your experiment.
  • NEVER write this statement using “first person”. Write the hypothesis in past tense (third person.)

Materials – 5 points (SINGLE SENTENCE)

  • This section should be written in sentence form and name all of the materials and equipment used.
  • Be sure to include specific amounts and concentrations of chemicals used.
  • Start the statement, “The materials used include _____, _____, etc.”

Methods (Procedure)- 5 points (STEPS; NUMBER)

  • This section includes the step-by-step procedures used.
  • The procedure should be so thorough that someone else could use your listed materials and procedures to conduct the same experiment and get the same results.

Results (Data & Questions) – 20 points

  • All data should be collected and organized in a logical order. Results should be illustrated as charts, tables, graphs, &/or diagrams. All graphs should include a title, the independent variable labeled on the horizontal axis, and the dependent variable labeled on the vertical axis.
  • All lab questions and answers should be included also with this section. ( NUMBER & UNDERLINE the questions & then write, but DON’T UNDERLINE the answers)
  • SKIP ONE LINE BETWEEN EACH QUESTION!

Error Analysis

  • Include any important factors that you think may have actually affected your results.

Discussion and Conclusion – 30 points

Discussion is the most important part of your report, because here, you show that you understand the experiment beyond the simple level of completing it.!!

  • Your conclusion MUST CONTAIN YOUR SUPPORTING DATA!
  • This is where you give a detailed account of what happened in the experiment.
  • Explain all observations and results in your experiment.
  • Analyze and interpret why these results were obtained.
  • Be sure to tell the significance or meaning of the results.
  • Restate the original hypothesis and explain whether the experiment succeeded. If the hypothesis was not correct, you should analyze why the results were not as predicted.
  • Explain experimental errors that appear in the results.

QUESTIONS MUST BE ANSWERED & CONCLUSION WRITTEN TO RECEIVE LAB CREDIT!

Additional help with Conclusions

CLICK HERE FOR NOTEBOOK COPY OF WRITING LAB REPORTS

Click here for Notebook paper Layout of Lab