Genetic Problems Solutions Campbell Ch14

 

Genetics Problems Campbell
1. A man with hemophilia (a recessive , sex-linked condition has a daughter of normal phenotype. She marries a man who is normal for the trait. What is the probability that a daughter of this mating will be a hemophiliac? A son? If the couple has four sons, what is the probability that all four will be born with hemophilia?

Solution

 

2. Pseudohypertropic muscular dystrophy is a disorder that causes gradual deterioration of the muscles. It is seen only in boys born to apparently normal parents and usually results in death in the early teens. (a) Is pseudohypertrophic muscular dystrophy caused by a dominant or recessive allele? (b) Is its inheritance sex-linked or autosomal? (c) How do you know? Explain why this disorder is always seen in boys and never girls.

Solution

3. Red-green color blindness is caused by a sex-linked recessive allele. A color-blind man marries a woman with normal vision whose father was color-blind. (a) What is the probability that they will have a color-blind daughter? (b) What is the probability that their first son will be color-blind? (Note: the two questions are worded a bit differently.)

Solution

4. A wild-type fruit fly (heterozygous for gray body color and normal wings was mated with a black fly with vestigial wings. The offspring had the following phenotypic distribution: wild type, 778; black-vestigial, 785; black-normal, 158; gray-vestigial, 162. What is the recombination frequency between these genes for body color and wing type.

Solution

5. In another cross, a wild-type fruit fly (heterozygous for gray body color and red eyes) was mated with a black fruit fly with purple eyes. The offspring were as follows: wild-type, 721; black-purple, 751; gray-purple, 49; black-red, 45. (a) What is the recombination frequency between these genes for body color and eye color? (b) Following up on this problem and problem 4, what fruit flies (genotypes and phenotypes) would you mate to determine the sequence of the body color, wing shape, and eye color genes on the chromosomes?

Solution

6. A space probe discovers a planet inhabited by creatures who reproduce with the same hereditary patterns as those in humans. Three phenotypic characters are height (T = tall, t = dwarf), hearing appendages (A = antennae, a = no antennae), and nose morphology (S = upturned snout, s = downturned snout). Since the creatures were not “intelligent” Earth scientists were able to do some controlled breeding experiments, using various heterozygotes in testcrosses. For a tall heterozygote with antennae, the offspring were tall-antennae, 46; dwarf-antennae 7; dwarf-no antennae 42; tall-no antennae 5. For a heterozygote with antennae and an upturned snout, the offspring were antennae-upturned snout 47; antennae-downturned snout, 2; no antennae-downturned snout, 48: no antennae-upturned snout 3. Calculate the recombination frequencies for both experiments.

Solution

7. Using the information from problem 6, a further testcross was done using a heterozygote for height and nose morphology. The offspring were tall-upturned nose, 40; dwarf-upturned nose, 9; dwarf-downturned nose, 42; tall-downturned nose, 9. Calculate the recombination frequency from these data; then use your answer from problem 6 to determine the correct sequence of the three linked genes.

Solution

8. Imagine that a geneticist has identified two disorders that appear to be caused by the same chromosomal defect and are affected by genomic imprinting: blindness and numbness of the limbs. A blind woman (whose mother suffered from numbness) has four children, two of whom, a son and daughter, have inherited the chromosomal defect. If this defect works like Prader-Willi and Angelman syndromes, what disorders do this son and daughter display? What disorders would be seen in their sons and daughters?

Solution

9. What pattern of inheritance would lead a geneticist to suspect that an inherited disorder of cell metabolism is due to a defective mitochondrial gene?

Solution

10. An aneuploid person is obviously female, but her cells have two Barr bodies. what is the probable complement of sex chromosomes in this individual?

Solution

11. Determine the sequence of genes along a chromosome based on the following recombination frequencies: A-B, 8 map units; A-C, 28 map units; A-D, 25 map units; B-C , 20 map units; B-D, 33 map units.

Solution

12. About 5% of individuals with Downs syndrome are the result of chromosomal translocation. In most of these cases, one copy of chromosome 21 becomes attached to chromosome 14. How does this translocation lead to children with Down syndrome?

Solution

13. Assume genes A and B are linked and are 50 map units apart. An individual heterozygous at both loci is crossed with an individual who is homozygous recessive at both loci. (a) What percentage of the offspring will show phenotypes resulting from crossovers? (b) If you did not know genes A and B were linked, how would you interpret the results of this cross?

Solution

14. In Drosophila, the gene for white eyes and the gene that produces “hairy” wings have both been mapped to the same chromosome and have a crossover frequency of 1.5%. A geneticist doing some crosses involving these two mutant characteristics noticed that in a particular stock of flies, these two genes assorted independently; that is they behaved as though they were on different chromosomes. What explanation can you offer for this observation?

Solution

 

BACK

Sponge Coloring Diagram and Questions

Found at the Biology Corner                Name __________________ Period ______

SciSponge.bmp (79782 bytes)Sponges – A Coloring Worksheet

Since sponges look like plants, it is understandable why early biologists thought they were plants. Today, we know that sponges are simple, multicellular animals in the Kingdom Animalia, Phylum Porifera. This phylum is thought to represent the transition from unicellular animals to multicellular animals. Most (but not all) sponges are asymmetrical and have no definite shape. Sponges, like all animals, are eukaryotic – meaning their cells have a nucleus. Porifera in Latin means “pore-bearer” and refers to the many pores or openings in these animals. Because of these pores, a sponge can soak up and release water. At one time, real sponges were used for cleaning and bathing. Today, most are artificially made.

All adult sponges are sessile, meaning they are attached to some surface. Since they cannot move, sponges cannot pursue their food. Instead, they are filter feeders, meaning they obtain their food by straining the water for small bits of food like bacteria, algae or protozoans.

Sponges exhibit less specialization (adaptation of a cell for a particular function) of cells than most invertebrates. The primitive structure of a sponge consists of only two layers of cells separated by a non-living jelly like substance. The outer layer of the sponge is the epidermis which is made of flat cells called epithelial cells. Color all the epithelial cells (B) of the epidermis peach or pink.

The inner layer consists of collar cells (A) whose function is to circulate water through the sponge. They do this by swishing their flagella which pulls water through the incurrent pore – water then travels out the osculum at the top of the sponge. As water passes through the sponge in this way, cells absorb food and oxygen and waste is excreted. Color the osculum (D) dark blue, the incurrent pores (C) light blue. Color the inside of the sponge where water circulates the same light blue as you colored the incurrent pores. Color all the collar cells (A) red.

In the jelly-like substance between the epidermis and the collar cells are cells called amebocytes – because they look like amebas. The job of the amebocytes is to travel around distributing food and oxygen to the cells of the epidermis. Because of the amebocytes, scientists believe that sponges evolved from protists. Color all of the amebocytes (E) green – look for them carefully.

The body of the sponge would collapse if it did not have some type of supporting structure. Some sponges have a soft network of protein fibers called spongin. Others have tiny, hard particles called spicules. Many of these spicules also stick out of the epidermis and provide the sponge with protection. Most sponges have a combination of spicules and spongin, the ratio often determines how soft or hard the sponge is. Search for and color all the pointy spicules (F) brown.

 

Reproduction for sponges can be accomplished both sexually and asexually. There are three ways for a sponge to reproduce asexually: budding, gemmules, and regeneration. Sponges can simply reproduce by budding, where a new sponge grows from older ones and eventually break off. Color the adult sponge (J) pink and all the buds (G) you can find red. Sponges can also reproduce by regeneration, where missing body parts are regrown. People who harvest sponges often take advantage of this by breaking off pieces of their catch and throwing them back in the water, to be harvested later. Finally, sponges can reproduce by creating gemmules – which is a group of amebocytes covered by a hard outer covering. Color the gemmule (H) yellow.

Sexual reproduction occurs when one sponge releases sperm into the water. This sperm travels to another sponge and fertilizes its eggs. The larva form will then swim to another location using its flagella where it will grow into an adult sponge. Most sponge species are hermaphrodites, they can produce both eggs and sperm.

Questions:

1. What did early biologists think sponges were? ______________________

2. Sponges belong to the Kingdom _________________ and the Phylum _______________

3. Sponges are [ unicellular or multicelluar ] and [ prokaryotic or eukaryotic ]

4. What type of symmetry do sponges have? ___________________________________

5. What does it mean to be sessile? ____________________________________

6. How do sponges get their food? ___________________________________

7. Water enters the sponge through the _____________________ and leaves through the
_____________________.

8. What is the job of the amebocyte? ________________________________________

9. What two substances give the sponge support? _________________________________

10. Tiny sponges growing from the main body of the sponge are called _________________

11. What is a gemmule? ___________________________________________________

12. What is a hermaphrodite? ______________________________________________

 

 

Label the letters on the diagrams

SciSpongesColoringWSP3.bmp (1403574 bytes)

 

 

Label the letters on the diagrams
SciSpongesColoringWSP4.bmp (2585142 bytes)

Found at www.biologycorner.com

Campbell Chapter 14 Gen Prob 1

Molecular Genetics: Problem 1
A man with hemophilia (a recessive , sex-linked condition has a daughter of normal phenotype. She marries a man who is normal for the trait. What is the probability that a daughter of this mating will be a hemophiliac? A son? If the couple has four sons, what is the probability that all four will be born with hemophilia?

Genotypes:

A man with hemophilia is XhY where h = hemophilia gene and H = the normal gene.
Any daughter with normal phenotype whose father has hemophilia will be a carrier.

Her genotype must be:

XhXH and NOT XHXH
We can use a Punnett square to show the probability of a daughter or son having hemophilia.

daughter x normal man
XhXH x XHY

A. If the daughter marries a normal male the probability of a daughter having hemophilia is zero.

B. About 50% of male children would have hemophilia (Boxes 2 and 4 above)

C. The probability that all 4 sons have inherited hemophilia would be: 1/2 x 1/2 x 1/2 x 1/2 or 1/16.

BACK

1st Semester Test Review 2004-05

 

First Semester Review  2004-05      

 

What are the smallest units that can carry on life functions called?
Living things are composed of ______________.
Give an example of a scientific observation.
What is a hypothesis?
What 3 things compose an atom?
Matter is made of ________________.
When atoms gain energy, what happens to electrons?
Do  cells contain a few or thousands of different kinds of enzymes?
__________________ reactions are important in organisms because they allow the passage of energy from one molecule to another.
What is a polar molecule?
Water molecules break up other polar substances. Give an example of such a polar molecule.
What happens to ionic compounds in water?
Which is not a carbohydrate —– glycogen, steroids, cellulose, or sugars?
Amino acids are the monomers for making ________________.
Is ice an example of an organic molecule?
The type & order of the amino acids determines the ___________ of a protein.
Very active cells need more of which organelle?
What organelle is the packaging & distribution center of the cell?
What membrane surrounds the nucleus?
What is the function of mitochondria. Sketch their shape.
Where is chlorophyll found in plants?
Diffusion takes place from ________________ concentration to ___________.
If a cell has a high water content, will it lose or gain water?
Ink dispersing in a beaker is an example of ________________.
Very large molecules enter cells by a process called ________________.
Endocytosis and exocytosis occur in ______________ directions across a cell membrane.
What is photosynthesis?
Where do the dark reactions of photosynthesis take place?
When chlorophyll absorbs light energy ATP is made and what other energy carrying molecule?
When chlorophyll absorbs light energy, what happens to its electrons?
_______________ molecules are responsible for the photosystems.
Electrons that have absorbed energy & moved to a higher energy level enter what chain?
When cells break down food molecules, energy is temporarily stored in what molecule?
When muscles do not get enough oxygen, what acid forms during exercise?
If you are growing bacteria in a culture and lactic acids starts to form, the bacteria are not getting enough of what gas?
The 2 stages of cellular respiration are _____________ & oxidative respiration.
Citric acid forms in which cycle during cellular respiration?
ATP molecules are formed inside what cellular organelle?
What is the study of life called?

 

2006 1st Semester Test Guide

First Semester Test 2006 Study Guide

 

1. What is the study of life called?

2. Instructions for traits passed from parent to offspring?

3. Keeping things stable or the same in cells?

4. Smallest units that can carry on life?

5. All living things require _________ for metabolism.

6. All living things are made of __________.

7. Salamanders with curved tails in polluted water are an example of which part of the scientific method?

8. The smallest part of carbon with all the same properties is called?

9. Where are electrons found in an atom & what is their charge?

 

10. When electrons gain energy they move to _____________________.

11. How many covalent bonds can carbon form?

12. Compounds may form from the transfer or __________ of electrons.

13. What happens to ionic compounds when placed in water?

 

14. Ionic bonds form from the ____________ of electrons.

15. Covalent bonds form from the ___________ of electrons.

16. What element do all organic compounds contain?

17. Give several examples of carbohydrates.

 

 

18. In what from do animals store glucose?

19. What are the monomers for proteins?

20. Is the following model a carbohydrate, lipid, or protein?

21. Sketch a fatty acid chain found in lipids.

22. What type of fatty acids contains double bonds?

23. Name the 2 nucleic acids.

24. When the volume of a cell increases, what happens to the surface area?

 

 

25. How does a prokaryotic cell differ from a eukaryotic cell?

 

 

26. What’s the job of the plasma membrane?

 

27. Parts of cells performing specific functions are called?

28. The ER sends proteins & lipids it makes to the __________ to be modified.

29. The Golgi ships & receives cell products in transport ___________.

30. In what organelle is ATP produced?

31. Ribosomes make ____________.

32. All eukaryotic cells have a ___________ containing the genetic material.

33. Diffusion occurs in what direction?

34. What is osmosis?

35. Ink dissolving in water is an example of _____________.

36. Riding of cell wastes in sacs is called _____________.

37. What is the effect of placing a plant into a hypertonic solution?

 

38. What is the ultimate energy for life on Earth?

39. Grana are suspended in the _________ of chloroplasts.

40. ____________ absorbs light energy for plants.

41. What happens to chlorophyll’s electrons when they absorb sunlight?

42. What is the source of oxygen in photosynthesis?

43. What gas is a byproduct of photosynthesis?

44. What type of skeleton do insects have?

45. The Calvin cycle occurs in what process?

46. The breaking down of food to release energy is called?

47. __________ builds up in heavily exercised muscles.

48. Name the 3 parts of cellular respiration.

 

49. How many chromosomes are in a human egg or sperm cell?

50. DNA compacts itself by wrapping around ____________.

51. How do insects help crops?