Genetics of Drosophila Melanogaster

 

 

Genetics of Drosophila melanogaster

Introduction:
Gregor Mendel revolutionized the study of genetics. By studying genetic inheritance in pea plants, Gregor Mendel established two basic laws of that serve as the cornerstones of modern genetics: Mendel’s Law of Segregation and Law of Independent Assortment. Mendel’s Law of Segregation says that each trait has two alleles, and that each gamete contains one and only one of these alleles. These alleles are a source of genetic variability among offspring. Mendel’s Law of Independent Assortment says that the alleles for one trait separate independently of the alleles for another trait. This also helps ensure genetic variability among offspring.
Mendel’s laws have their limitations. For example, if two genes are on the same chromosome, the assortment of their alleles will not be independent. Also, for genes found on the X chromosome, expression of the trait can be linked to the sex of the offspring. Our knowledge of genetics and the tools we use in its study have advanced a great deal since Mendel’s time, but his basic concepts still stand true.
Drosophila melanogaster, the common fruit fly, has been used for genetic experiments since T.H. Morgan started his experiments in1907. Drosophila make good genetic specimens because they are small, produce many offspring, have easily discernable mutations, have only four pairs of chromosomes, and complete their entire life cycle in about 12 days. They also have very simple food requirements. Chromosomes 1 (the X chromosome), 2, and 3 are very large, and the Y chromosome – number 4 – is extremely small. These four chromosomes have thousands of genes, many of which can be found in most eukaryotes, including humans.
Drosophila embryos develop in the egg membrane. The egg hatches and produces a larva that feeds by burrowing through the medium. The larval period consists of three stages, or instars, the end of each stage marked by a molt. Near the end of the larval period, the third instar will crawl up the side of the vial, attach themselves to a dry surface, and form a pupae. After a while the adults emerge.
Differences in body features help distinguish between male and female flies. Females are slightly larger and have a light-colored, pointed abdomen. The abdomen of males will be dark and blunt. The male flies also have dark bristles, sex combs, on the upper portion of the forelegs.

Hypothesis:
After performing a dihybrid cross between males with normal wings and sepia eyes and females with vestigial wings and red eyes, we expect to see only hybrids with normal wings and red eyes in the first filial generation. Then we expect to observe a 9:3:3:1 ratio of phenotypes in the second filial generation.

Materials and Methods:
The materials used for this lab were:  culture vial of dihybrid cross, isopropyl alcohol 10%, camel’s hair brush, thermo-anesthetizer, petri dish, 2 Drosophila vials and labels, Drosophila medium, fly morgue.

A vial of wild-type Drosophila was thermally immobilized and the flies were placed in a petri dish. Traits were observed. A vial of prepared Drosophila was immobilized and then observed under a dissecting microscope. Males and females were separated and mutations were observed and recorded. The parental generation was placed in the morgue. The vial was placed in an incubator to allow the F1 generation to mature.
The F1 generation was immobilized and examined under a dissecting microscope. The sex and mutations of each fly were recorded. Five mating pairs of the F1 generation were placed into a fresh culture vial, and the vial was placed in an incubator. The remaining F1 flies were placed in the morgue. The F1 flies were left in the vial for about a week to mate and lay eggs. Then the adults were removed and placed in the morgue. The vial was placed back in the incubator to allow the F2 generation to mature. The F2 generation was immobilized and examined under a dissecting microscope. The sex and mutations of each fly were recorded.

Results:  

Table 1 Phenotypes of the Parental Generation

Phenotypes Number of Males Number of Females
Normal wings/red eyes 0 0
Normal wings/sepia eyes 3 0
vestigial wings/red eyes 0 4
vestigial wings/sepia eyes 0 0

Table 2  Phenotypes of the F1 Generation

Phenotype Number of Males Number of Females
Normal wings/red eyes 78 95
Normal wings/sepia eyes 0 0
vestigial wings/red eyes 0 0
vestigial wings/sepia eyes 0 0

Table 3  Phenotypes of the F2 Generation

Phenotypes Number of Males  Number of Females
Normal wings/red eyes 4 7
Normal wings/sepia eyes 4 5
vestigial wings/red eyes 0 1
vestigial wings/sepia eyes 0 0
normal red/mutated body shape 2 0
normal sepia/mutated body shape 1 0

Questions

  1. How are the alleles for genes on different chromosomes distributed to gametes? What genetic principle does this illustrate?
    The alleles on different chromosomes are distributed independently of one another, demonstrating Mendel’s Law of Independent Assortment.
  2. Why was it important to have virgin females for the first cross (yielding the F1 generation), but not the second cross (yielding the F2 generation)?
    It was important to have virgin females for the first cross to ensure that the offspring are the result of the desired cross. It was not necessary to isolate virgin females for the second cross because the only male flies to which they had been exposed were also members of the F1 generation.
  3. What did the chi-square test tell you about the validity of your experiment data? What is the importance of such a test?
    The chi-square test showed that the results of our first cross were valid, but that the results of our F1 cross were not normal. It is important to conduct such a test to determine how much your experimental data deviated from what was expected.

Discussion and Conclusion:
The results of our parental cross turned out just as expected, but our F2 generation was not normal. Some sort of mutation must have occurred that caused the strange body shape seen in several individuals of our F2 generation.

Graphing Practice

Graphing Practice

Introduction

  • Graphing is an important procedure used by scientists to display the data that is collected during a controlled experiment
  • Line graphs must be constructed correctly to accurately portray the data collected
  • Many times the wrong construction of a graph detracts from the acceptance of an individual’s hypothesis
  • A graph contains five major parts:
    a. Title
    b. The independent variable
    c. The dependent variable
    d. The scales for each variable
    e. A legend
  • The title: depicts what the graph is about. By reading the title, the reader should get an idea about the graph. It should be a concise statement placed above the graph.
  • The Independent Variable: is the variable that can be controlled by the experimenter. It usually includes time (dates, minutes, hours), depth (feet, meters), temperature (Celsius). This variable is placed on the X axis (horizontal axis).
  • The Dependent Variable: is the variable that is directly affected by the independent variable. It is the result of what happens because of the independent variable. Example: How many oxygen bubbles are produced by a plant located five meters below the surface of the water? The oxygen bubbles are dependent on the depth of the water. This variable is placed on the Y-axis or vertical axis.
  • The Scales for each Variable: In constructing a graph one needs to know where to plot the points representing the data. In order to do this a scale must be employed to include all the data points. This must also take up a conservative amount of space. It is not suggested to have a run on scale making the graph too hard to manage. The scales should start with 0 and climb based on intervals such as: multiples of 2, 5, 10, 20, 25, 50, or 100. The scale of numbers will be dictated by your data values.
  • The Legend: is a short descriptive narrative concerning the graph’s data. It should be short and concise and placed under the graph.
  • The Mean for a group of variables: To determine the mean for a group of variables, divide the sum of the variables by the total number of variables to get an average.
  • The median for a group of variables: To determine median or “middle” for an even number of values, put the values in ascending order and take the average of the two middle values.    e.g.    2, 3, 4, 5, 9, 10     Add 4+5 (2 middle values) and divide by 2 to get 4.5
  • The mode for a group of variables: The mode for a group of values is the number that occurs most frequently.     e.g.   2, 5,  8, 2,  6,  11    The number 2 is the mode because it occurred most often (twice)  

Procedure 1:
Using the following data, answer the questions below and then construct a line graph.

 

Depth in meters Number of Bubbles / minute Plant A Number of Bubbles / minute Plant B
2 29 21
5 36 27
10 45 40
16 32 50
25 20 34
30 10 20

 

 

1. What is the dependent variable and why?  

2. What is the independent variable and why?

3. What title would you give the graph? .

4. What are the mean, median, and mode of all 3 columns of data? 

a). Depth :                      Mean____________Median__________Mode________ 

b). Bubble Plant A.:        Mean ____________Median_________Mode________ 

c). Bubbles Plant B:        Mean ____________Median_________Mode________

Graph Title: _________________________________________________________

Legend: ______________________________________________________________ 

Procedure 2:
Diabetes is a disease affecting the insulin producing glands of the pancreas. If there is not enough insulin being produced by these cells, the amount of glucose in the blood will remain high. A blood glucose level above 140 for an extended period of time is not considered normal. This disease, if not brought under control, can lead to severe complications and even death. 

Answer the following questions concerning the data below and then graph it.  

 

Time After Eating hours Glucose mg /dL of Blood Person A Glucose mg /dL of Blood Person B
0.5 170 180
1 155 195
1.5 140 230
2 135 245
2.5 140 235
3 135 225
4 130 200

 

 1. What is the dependent variable and why?

2. What is the independent variable and why?

3. What title would you give the graph?

4. Which, if any, of the above individuals (A or B) has diabetes? 

5. What data do you have to support your hypothesis? 

6. If the time period were extended to 6 hours, what would the expected blood glucose level for Person B? 

Title: ________________________________________________________________

Legend: ______________________________________________________________

Summary:
1. What conclusions can be determined from the data in graph 1?

2. What conclusions can be determined from the data in graph 2?

3. Can the data in each of these graphs be used to construct other types of graphs?

4. If so, what other graph types can be constructed?

 

BACK

 

Click Here for Notebook Copy

Genetics Problems ppt Questions

Genetics Problems
ppt Questions

 

Independent Assortment

1. How many different kinds of gametes could the following individuals produce? Remember the formula 2n where n equals the number of heterozygotes.

     a. aaBb

     b. CCDdee

     c. AABbCcDD

     d. MmNnOoPpQq

     e. UUVVWWXXYYZz

 

P1, F1, and F2 Monohybrid Crosses

2. In dogs, wire-haired is due to a dominant gene (W), smooth-haired is due to its recessive allele (w). Show the results of crossing a homozygous wire-haired dog with a smooth-haired dog.

 

 

 

 

 

3. What kind of cross is this?

4. What was the genotype of all of the puppies? the phenotype?

 

5. The puppies belong to the _________ generation.

6. How would you write the F1 cross for this trait?

7. Show the results of working the F1 cross for this trait.

 

 

 

 

6. What phenotypic ratio did you get from this F1 cross?

7. What genotypic ratio did you get from this F1 cross?

8. Two wire-haired dogs are mated. Among the offspring of their first litter is a smooth-haired pup. If these two dogs mate again, what are the chances of them having another smooth-haired pup?

 

 

 

9. What are the chances that the pup will be wire-haired?

 

10. A Wire-haired male is mated with a smooth-haired female. The mother of the wire-haired male was smooth-haired. What are the phenotypes and genotypes of the pups they could produce? Show how you got your results.

 

 

 

 

 

Incomplete Dominance 

11. In snapdragons, red flower color (R) is incompletely dominant over white flower color (r). The hybrids or heterozygous plants (Rr) are pink in color. Show the genotype for a white flower and for a red flower.

 

12. If a red-flowered plant is crossed with a white-flowered plant, what are the genotypes and phenotypes of the F1 generation plants? Show your work.

 

 

 

 

13. What is the phenotype of the flowers? what is their genotype?

 

14. What genotypes and phenotypes will be produced in the F2 generation? Show your work.

 

 

 

 

 

15. How did the genotypic and phenotypic ratio compare to each other in this incomplete dominance cross?

16. What would the phenotypic ratio have been if this had been complete dominance?

17. What kind of offspring can be produced if a red-flowered plant is crossed with a pink-flowered plant? Show your work.

 

 

 

 

 

18. What kind of offspring is/are produced if a pink-flowered plant is crossed with a white-flowered plant? Show your work.

 

 

 

 

 

Sex-linked Traits

19. What is the genotype for female?  for male?

20. In humans, colorblindness (Xc) is a recessive sex-linked trait. Two people with normal color vision (XC) have a colorblind son. What are the genotypes of the parents?

 

21. What are the genotypes and phenotypes possible among their other children? Show your work.

 

 

 

 

 

22. A couple has a colorblind daughter. What are the possible genotypes and phenotypes of the parents and the daughter?

 

 

Dihybrid Crosses

23. In humans, the presence of freckles is due to a dominant gene (F) and the non-freckled condition is due to its recessive allele (f). Dimpled cheeks (D) are dominant to non-dimpled cheeks (d). Two persons with freckles and dimpled cheeks have two children. One child has freckles but no dimples. The other child has dimples but no freckles. What is the genotypes of the parents? the children?

 

 

24. What are the possible phenotypes and genotypes of the children that they could produce? Show all your work.

 

 

 

 

 

 

 

 

 

 

25. What phenotypic ratio did you get?

26. What genotypic ratio did you get?

27. What are the chances that they would have a child whom lacks both freckles and dimples?  What would be the child’s genotype?

 

28. A person with freckles and dimples whose mother lacked both freckles and dimples marries a person with freckles but no dimples whose father did not have freckles or dimples. What are the chances that they would have a child whom lacks both freckles and dimples? Show the genotypes of the parents and all the offspring.

 

 

 

 

 

 

 

 

29. In dogs, the inheritance of hair color involves a gene (B) for black hair and a gene (b) for brown hair. A dominant (C) is also involved. It must be present for the color to be synthesized (made). If this gene is NOT present, a blond condition results. Complete the following table:

 

Genotype Phenotype Color Deposition gene
BB or Bb CC or Cc
bb CC or Cc
BB or Bb cc
bb cc

 

 

30. A brown-haired male, whose father was a blond, is mated with a black-haired female ,whose mother was brown-haired and her father was blond. What is the genotype of the man and woman? Show the genotypes and phenotypes of all of their offspring.

 

 

 

 

 

 

 

Population Genetics or Hardy-Weinberg Law

Sixteen percent (16%) of the human population is known to be able to wiggle their ears. This trait is determined to be a recessive gene. Use the following equations to answer this population genetics problem:

1 = p2 + 2pq + q2                                      then use 1 = p + q

p2 – frequency of homozygous dominants

2pq – frequency of heterozygotes

q2 – frequency of homozygous recessives

p – frequency of dominant allele

q – frequency of recessive allele

31. What percent of the population is homozygous dominant for this trait? Show your work.

 

 

 

 

 

32. What percent of the population is heterozygous for this trait? Show your work.

 

 

 

 

 

Multiple Alleles – ABO Blood Type 

33. Henry Anonymous, a film star, was involved in a paternity case. The woman bringing the suit had two children. One child had blood type A and the other child had blood type B. Her blood type was O, the same as Henry’s. The judge in the case awarded damages to the woman, saying that Henry had to be the father of at least one of her children. was the judge correct in his decision? Show how you got your answer.

 

 

 

Genetics Study Guide

Genetics Study Guide 

The two genes or alleles that combine to determine a trait would be the organism’s _______________.
Type AB blood, having two genes dominant for a trait, is an example of ________.
State Mendel’s law of segregation.
Rr x Rr is an example of what type of cross —– P1, F1, or F2?
If both alleles are the same in a genotype, is the genotype homozygous or heterozygous?
Which cross is a cross between two hybrids —– P1, F1, or F2?
__________ dominance results in the blending of genes in the hybrid. Give an example using flower color.
What is another term for a heterozygous genotype?
The _____________ is the physical feature such as round peas that results from a genotype.
How many traits are involved in a monohybrid cross?
What type of organism was used in the first genetic studies done by Gregor Mendel?
What is a karyotype?
The two genes for a trait represented by capital & lower case letters are called __________.
How many traits are involved in a dihybrid cross?
Which of Mendel’s laws states that the dominant gene in a pair will be expressed?
If both alleles are the same, is the genotype homozygous or heterozygous? Write an example.
Write an example of a hybrid or heterozygous genotype.
The genes for sex-linked traits are only carried on which chromosome?
Who is considered to be the “father of genetics”?
A second filial or F2 cross is also called a ____________ cross.
The failure of chromosomes to separate during meiosis (egg & sperm formation) is known as _________________.
A cross between two pure or homozygous organisms is called what type of cross —– P1, F1, or F2?
What genetic disorder results from a sex-linked trait that affects color vision?
The genetic disorder called _______________ is known as the “free bleeders” disease.
Having three 21st chromosomes causes the genetic disorder known as _________.
A person suffering from the genetic disorder called ______________ can not digest fats.
_____________________ disease is a genetic disorder where red blood cells carry less oxygen.
Work a P1 cross for plant height in peas.
Work an F1 cross for plant height in peas.
BACK

 

Hardy-Weinberg Problems

 

POPULATION GENETICS AND THE HARDY-WEINBERG LAW

 

The Hardy-Weinberg formulas allow scientists to determine whether evolution has occurred. Any changes in the gene frequencies in the population over time can be detected. The law essentially states that if no evolution is occurring, then an equilibrium of allele frequencies will remain in effect in each succeeding generation of sexually reproducing individuals. In order for equilibrium to remain in effect (i.e. that no evolution is occurring) then the following five conditions must be met:

  1. No mutations must occur so that new alleles do not enter the population.
  2. No gene flow can occur (i.e. no migration of individuals into, or out of, the population).
  3. Random mating must occur (i.e. individuals must pair by chance)
  4. The population must be large so that no genetic drift (random chance) can cause the allele frequencies to change.
  5. No selection can occur so that certain alleles are not selected for, or against.

Obviously, the Hardy-Weinberg equilibrium cannot exist in real life. Some or all of these types of forces all act on living populations at various times and evolution at some level occurs in all living organisms. The Hardy-Weinberg formulas allow us to detect some allele frequencies that change from generation to generation, thus allowing a simplified method of determining that evolution is occurring. There are two formulas that must be memorized:

 

p2 + 2pq + q2 = 1 and p + q = 1

 

p = frequency of the dominant allele in the population
q = frequency of the recessive allele in the population
p2 = percentage of homozygous dominant individuals
q2 = percentage of homozygous recessive individuals
2pq = percentage of heterozygous individuals

Individuals that have aptitude for math find that working with the above formulas is ridiculously easy. However, for individuals who are unfamiliar with algebra, it takes some practice working problems before you get the hang of it. Below I have provided a series of practice problems that you may wish to try out. Note that I have rounded off some of the numbers in some problems to the second decimal place.

PROBLEM #1    You have sampled a population in which you know that the percentage of the homozygous recessive genotype (aa) is 36%. Using that 36%, calculate the following:

  1. The frequency of the “aa” genotype.
  2. The frequency of the “a” allele.
  3. The frequency of the “A” allele.
  4. The frequencies of the genotypes “AA” and “Aa.”
  5. The frequencies of the two possible phenotypes if “A” is completely dominant over “a.”

PROBLEM #2.    Sickle-cell anemia is an interesting genetic disease. Normal homozygous individuals (SS) have normal blood cells that are easily infected with the malarial parasite. Thus, many of these individuals become very ill from the parasite and many die. Individuals homozygous for the sickle-cell trait (ss) have red blood cells that readily collapse when deoxygenated. Although malaria cannot grow in these red blood cells, individuals often die because of the genetic defect. However, individuals with the heterozygous condition (Ss) have some sickling of red blood cells, but generally not enough to cause mortality. In addition, malaria cannot survive well within these “partially defective” red blood cells. Thus, heterozygotes tend to survive better than either of the homozygous conditions. If 9% of an African population is born with a severe form of sickle-cell anemia (ss), what percentage of the population will be more resistant to malaria because they are heterozygous (Ss) for the sickle-cell gene?

PROBLEM #3.    There are 100 students in a class. Ninety-six did well in the course whereas four blew it totally and received a grade of F. Sorry. In the highly unlikely event that these traits are genetic rather than environmental, if these traits involve dominant and recessive alleles, and if the four (4%) represent the frequency of the homozygous recessive condition, please calculate the following:

  1. The frequency of the recessive allele.
  2. The frequency of the dominant allele.
  3. The frequency of heterozygous individuals.

PROBLEM #4.    Within a population of butterflies, the color brown (B) is dominant over the color white (b). And, 40% of all butterflies are white. Given this simple information, which is something that is very likely to be on an exam, calculate the following:

  1. The percentage of butterflies in the population that are heterozygous.
  2. The frequency of homozygous dominant individuals.

PROBLEM #5.     A rather large population of Biology instructors have 396 red-sided individuals and 557 tan-sided individuals. Assume that red is totally recessive. Please calculate the following:

  1. The allele frequencies of each allele.
  2. The expected genotype frequencies.
  3. The number of heterozygous individuals that you would predict to be in this population.
  4. The expected phenotype frequencies.
  5. Conditions happen to be really good this year for breeding and next year there are 1,245 young “potential” Biology instructors. Assuming that all of the Hardy-Weinberg conditions are met, how many of these would you expect to be red-sided and how many tan-sided?

PROBLEM #6.    A very large population of randomly-mating laboratory mice contains 35% white mice. White coloring is caused by the double recessive genotype, “aa”. Calculate allelic and genotypic frequencies for this population.

PROBLEM #7.    After graduation, you and 19 of your closest friends (lets say 10 males and 10 females) charter a plane to go on a round-the-world tour. Unfortunately, you all crash land (safely) on a deserted island. No one finds you and you start a new population totally isolated from the rest of the world. Two of your friends carry (i.e. are heterozygous for) the recessive cystic fibrosis allele (c). Assuming that the frequency of this allele does not change as the population grows, what will be the incidence of cystic fibrosis on your island?

PROBLEM #8.    You sample 1,000 individuals from a large population for the MN blood group, which can easily be measured since co-dominance is involved (i.e., you can detect the heterozygotes). They are typed accordingly:

 

BLOOD TYPE GENOTYPE NUMBER OF INDIVIDUALS RESULTING FREQUENCY
M MM 490 0.49
MN MN 420 0.42
N NN 90 0.09

 

Using the data provide above, calculate the following:

  1. The frequency of each allele in the population.
  2. Supposing the matings are random, the frequencies of the matings.
  3. The probability of each genotype resulting from each potential cross.

PROBLEM #9.    Cystic fibrosis is a recessive condition that affects about 1 in 2,500 babies in the Caucasian population of the United States. Please calculate the following:

  1. The frequency of the recessive allele in the population.
  2. The frequency of the dominant allele in the population.
  3. The percentage of heterozygous individuals (carriers) in the population.

PROBLEM #10.    In a given population, only the “A” and “B” alleles are present in the ABO system; there are no individuals with type “O” blood or with O alleles in this particular population. If 200 people have type A blood, 75 have type AB blood, and 25 have type B blood, what are the allelic frequencies of this population (i.e., what are p and q)?

PROBLEM #11.    The ability to taste PTC is due to a single dominate allele “T”. You sampled 215 individuals in biology, and determined that 150 could detect the bitter taste of PTC and 65 could not. Calculate all of the potential frequencies.

ANSWERS