IMMUNODEFICIENCY NOTES

Immunodeficiency is the failure of the immune system to protect against disease or malignancy. Primary Immunodeficiency is caused by genetic or developmental defects in the immune system. These defects are present at birth but may show up later on in life. Secondary or acquired immunodeficiency is the loss of immune function as a result of exposure to disease agents, environmental factors, immunosuppression, or aging.

SECONDARY (ACQUIRED) IMMUNODEFICIENCIES

Immunodeficiencies associated with infections

Bacterial, viral, protozoan, helminthic and fungal infections may lead to B cell, T cell, PMN and macrophage deficiencies. Most prominent among these is acquired immunodeficiency syndrome (AIDS). Secondary immunodeficiencies are also seen in malignancies.

Immunologic abnormalities in the AIDS

All acquired immunodeficiencies have been outdone by AIDS that is caused by Human Immunodeficiency Virus (HIV)-1. This virus was first discovered in 1981 and the patients exhibited fungal infections with opportunistic organisms such as Pneumocystis carinii and in other cases, with a skin tumor known as Kaposi’s sarcoma. There are two major types of HIV: HIV-1 and 2, the former being the strain frequently found in North America. HIV is spread through sexual intercourse, infected blood and body fluids as well as from mother to
offspring. HIV, which was discovered in 1983, is a retrovirus with RNA that is reverse transcribed to DNA by reverse transciptase (RT) following entry into the cell. The DNA is integrated into the cell genome as a provirus that is replicated along with the cell. HIV-1 does not replicate in most other animals but infects chimpanzees although it does not induce AIDS in them. Severe combined immunodeficient mice (SCID) reconstituted with human lymphocytes can be infected with HIV-1. The HIV-1 virion consists of a viral envelope made
up of the outer lipid bilayer of the host cell in which are embedded glycoproteins composed of the transmembrane gp41 along with the associated gp120. The gp120 binds the CD4 expressed on host cells. Within the viral envelope is the viral core or nucleocapsid consisting of a layer of matrix protein composed of p17 and an inner capsid made up of p24. The viral genome consists of two single stranded RNA molecules associated with two RT molecules as
well as other enzymes including a protease and an integrase.

Replication cycle and targets of therapy

The virus attaches to the CD4 molecule on Th cells, monocytes and dendritic cells through the gp120 of HIV. For HIV infection, a co-receptor is required. The co-receptor is a chemokine receptor such as CXCR4 or CCR5. CCR5, expressed predominantly on macrophages, and CXCR4 on CD4+ T cells serve as coreceptors for HIV infection. After the fusion of HIV envelope and the host membrane, the nucleocapsid enters the cell. The RT synthesizes viral DNA which is transported to the nucleus where it integrates with the cell
DNA in the form of a provirus. The provirus can remain latent till the cell is activated when the provirus also undergoes transcription. Virions, consisting of the transcribed viral RNA and proteins, are produced. These bud out of the host cell membrane from where they acquire the envelope. Thus, therapeutic agents have been developed that target viral entry and fusion, as well as serve as RT, protease and integrates inhibitors. Highly active anti-retroviral therapy
is a cocktail of 3 or more such agents.

Immunological Changes

The virus replicates rapidly and within about two weeks the patient may develop fever. The viral load in the blood increases significantly and peaks in two months, after which there is a sudden decline because of the latent virus found in germinal centers of the lymph nodes. CTL develop very early whereas antibodies can be detected between 3 – 8 weeks. The CTL killing of
of Th cells around 4 – 8 weeks leads to a decrease in CD4+ T cells. When the CD4+ T cell count decreases below 200 per cubic mm, full blown AIDS develops.

Immunotherapy

There are several barriers to development of an effective HIV vaccine.

 Attenuated vaccine may induce the disease
 CD4+ T cells may be destroyed by the vaccine
 Antigenic variation of HIV
 Low immunogenicity of the virus by downregulation of MHC molecules
 Lack of animal models
 Lack of in vitro tests

The following reagents have been considered in developing vaccines:

 Immunization with deletion mutants to reduce pathogenicity
 Vaccination with recombinant proteins
 Gene encoding proteins introduced into virus vectors may be used for
vaccination
 Chemokines that compete for the co-receptors
 IL-2 to boost the Th cells.

Immunodeficiencies associated with aging

These include a progressive decrease in thymic cortex, hypo-cellularity of and reduction in the size of thymus, a decrease in suppressor cell function and hence an increase in auto-reactivity, a decrease in CD4 cells functions. By contrast B cells functions may be somewhat elevated.

Immunodeficiencies associated with malignancies and other diseases

B cell deficiencies have been noted in multiple myeloma, Waldenstrom’s macroglobulinemia, chronic lymphocytic leukemia and well differentiated lymphomas. Hodgkin’s disease and advanced solid tumors are associated with impaired T-cell functions. Most chemotherapeutic agents used for treatment of malignancies are also immunosuppressive.

Other conditions in which secondary immunodeficiencies occur are sickle cell anemia, diabetes mellitus, protein calorie malnutrition, burns, alcoholic cirrhosis, rheumatoid arthritis, renal malfunction, etc.

PRIMARY IMMUNODEFICIENCIES

Primary immunodeficiencies are inherited defects of the immune system (figure 1). These defects may be in the specific or non-specific immune mechanisms. They are classified on the basis of the site of lesion in the developmental or differentiation pathway of the immune system. Individuals with immunodeficiencies are susceptible to a variety of infections and the
type of infection depends on the nature of immunodeficiency (Table 1).

SPECIFIC IMMUNE SYSTEM

There are a variety of immunodeficiencies which result from defects in stem cell differentiation and may involve T-cells, B-cells, and/or immunoglobulins of different classes and subclasses (Table 2).

A defect in the early hematopoiesis which involves stem cells results in reticular dysgenesis that leads to general immune defects and subsequent susceptibility to infections. This condition is often fatal but very rare.

Lymphoid lineage immunodeficiency

If the lymphoid progenitor cells are defective, then both the T and B cell lineages are affected and result in the severe combined immunodeficiency (SCID). Infants suffer from recurrent infections especially by opportunistic micro-organisms (bacterial, viral, mycotic and protozoan infections).

In about 50% of SCID patients, the immunodeficiency is x-linked whereas in the other half the deficiency is autosomal. Both are characterized by an absence of T cell and B cell immunity and absence (or very low numbers) of circulating T and B lymphocytes. Thymic shadows are absent on X-rays.

The x-linked severe SCID is due to a defect in the gamma-chain of IL-2 also shared by IL-4,-7, -11 and 15, all of which are involved in lymphocyte proliferation and/or differentiation. The autosomal SCIDs arise primarily from defects in adenosine deaminase (ADA) or purine nucleoside phosphorylase (PNP) genes which results is accumulation of dATP or dGTP, respectively, and cause toxicity to lymphoid stem cells. Other genetic defects leading to
SCID include those for RAG1, RAG2 and IL-7-alpha. If suspected of SCID, the patient must not receive live vaccine, as it will result in progressing disease.

Diagnosis is based on enumeration of T and B cells and immunoglobulin measurement. Severe combined immunodeficiency can be treated with a bone marrow transplant (see MHC and transplantation). Recently, autosomal SCID patients with ADA deficiency have been treated with a retroviral vector transfected with the gene with some success.

SCID includes several disorders


Patients having both T and B cell deficiency lack recombinase activating genes (RAG1 and 2) that are responsible for the T cell receptor and Ig gene rearrangements. These patients are athymic and are diagnosed by examining the T cell receptor (TCR) gene rearrangement. Defects in B cells are not observed in early infant life because of passive antibodies obtained from the mother. NK cells are normal.

In some SCID patients, T cells may be present but functionally defective because of deficiency in signaling mediated by the CD3 chain that is associated with the TCR.

Interleukin-2 receptor common gamma chain (IL-2Rγc) may be lacking in patients there by preventing signaling by IL-2, 4, 7, 9 and 15. These patients are T and NK cell deficient.

Adenosine deaminase (ADA) is responsible for converting adenosine to inosine. ADA deficiency leads to accumulation of adenosine which interferes with DNA synthesis. The patients have defects in T, B and NK cells.

Disorders of T cells

DiGeorge’s Syndrome (Deletion 22 Syndrome)

This the most clearly defined T-cell immunodeficiency and is also known as congenital thymic aplasia/hypoplasia, or immunodeficiency with hypoparathyroidism. The syndrome is associated with hypoparathyroidism, congenital heart disease, low set notched ears and fish shaped mouth. These defects results from abnormal development of the fetus during the 6th to 10th week of gestation when parathyroid, thymus, lips, ears and aortic arch are being formed. No genetic predisposition is clear and not all DiGeorge syndrome babies have thymic aplasia. A thymic graft taken from an early fetus (13 – 14 weeks of gestation) can be used for treatment. Older grafts may result in GVH reaction. In severely immunodeficient DiGeorge patients, live vaccines may cause progressive infections.

DiGeorge syndrome is autosomal dominant (figure 2) and is caused by a deletion in chromosome 22 (figure 3). The deletions are of variable size but size does not correlate with severity of disease. In about 6% of cases, the chromosome 22 micro-deletion is inherited but most cases result from de novo deletion which may be caused by environmental factors.

T cell deficiencies with variable degrees of B cell deficiency

Ataxia-telangiectasia

Ataxia-telangiectasia is a deficiency of T cells associated with a lack of coordination of movement (ataxis) and dilation of small blood vessels of the facial area (telangiectasis). T- cells and their functions are reduced to various degrees. B cell numbers and IgM concentrations are normal to low. IgG is often reduced and IgA is considerably reduced (in 70% of the cases). There is a high incidence of malignancy, particularly leukemias, in these patients. The defects arise from a breakage in chromosome 14 at the site of TCR and Ig heavy
chain genes.

Wiskott-Aldrich syndrome

This syndrome is associated with normal T cell numbers with reduced functions, which get progressively worse. IgM concentrations are reduced but IgG levels are normal. Both IgA and IgE levels are elevated. Boys with this syndrome develop severe eczema, petechia (due to platelet defect and thrombocytopenia). They respond poorly to polysaccharide antigens and
are prone to pyogenic infection. Wiskott-Aldrich syndrome is an X-linked disorder (figure 4) due to defect in a cytoskeletal glycoprotein, CD43.

MHC deficiency (Bare leukocyte syndrome)

A number of cases of immunodeficiency have been described in which there is a defect in the MHC class II transactivator (CIITA) protein gene, which results in a lack of class-II MHC molecule on their APC. Since the positive selection of CD4 cells in the thymus depends on the presence of these MHC molecules, these patients have fewer CD4 cells and are infection prone. There are also individuals who have a defect in their transport associated protein (TAP) gene and hence do not express the class-I MHC molecules and consequently are deficient in CD8+ T cells.

Disorders of B lymphocytes

There are a number of diseases in which T cell numbers and functions are normal: B cell numbers may be low or normal but immunoglobulin levels are low. These are briefly summarized below.

X-linked infantile hypogammaglobulinemia

X-linked hypogammaglobulinemia, also referred to as Bruton’s hypoglobulinemia or agammaglobulinemia, is the most severe hypogammaglobulinemia in which B cell numbers and all immunoglobulin levels are very low. The patients have failure of B-cell maturation associated with a defective B cell tyrosine kinase (btk) gene. Diagnosis is based on
enumeration of B cells and immunoglobulin measurement.

Transient hypogammaglobulinemia

Children, at birth, have IgG levels comparable to that of the mother. Because the half life of IgG is about 30 days, its level gradually declines, but by three months of age normal infants begin to synthesize their own IgG. In some infants, however, IgG synthesis may not begin until they are 2 to 3 years old. This delay has been attributed to poor T cell help. This results in a transient deficiency of IgG which can be treated with gamma-globulin.

Common variable hypogammaglobulinemia (Late onset hypogammaglobulinemia)

These individuals have acquired deficiencies of IgG and IgA in the 2nd or 3rd decade of their life and are susceptible to a variety of pyogenic bacteria and intestinal protozoa. They should be treated with specially prepared gamma-globulin for intravenous use.

IgA deficiency

IgA deficiency is the commonest of all immunodeficiencies (1/700 of all Caucasians). About 20% of individuals with IgA deficiency also have low IgG. IgA-deficient patients are very susceptible to gastrointestinal, eye and nasopharyngeal infections. Patients with IgA deficiency have a high incidence of autoimmune diseases (particularly immune complex type) and lymphoid malignancies. Anti-IgA antibodies (IgG) are detected in 30 to 40 percent
of patients who should not be treated with γ-globulins. Laboratory diagnosis is based on IgA measurement.

Selective IgG deficiency

Deficiencies of different IgG subclasses have been found. These patients are susceptible to pyogenic infections.

Hyper-IgM immunodeficiency

Individuals with this type of immunodeficiency have low IgA and IgG concentrations with abnormally high levels of IgM. These patients cannot make a switch from IgM to other classes which is attributed to a defect in CD40L on their CD4 cells. They are very susceptible to pyogenic infection and should be treated with intravenous gamma-globulins.

NON-SPECIFIC IMMUNE SYSTEM

Primary immunodeficiencies of the non-specific immune system include defects in phagocytic and NK cells and the complement system.

Defects of the phagocytic system

Defects of phagocytic cells (numbers and/or functions) can lead to increased susceptibility to a variety of infections.

Cyclicneutropenia

This is marked by low numbers of circulating neutrophil approximately every three weeks. The neutropenia lasts about a week during which the patients are susceptible to infection. The defect appears to be due to poor regulation of neutrophil production.

Chronic granulomatous disease(CGD)

CGD is characterized by marked lymphadenopathy, hepato- splenomegaly and chronic draining lymph nodes. Leukocytes have poor intracellular killing (figure 5) and low respiratory burst. In majority of these patients, the deficiency is due to a defect in NADPH oxidase (cytochrome b558 : gp91phox, or rarely gp22phox) or other cofactor proteins (gp47phox, gp67phox) that participate in phagocytic respiratory burst. These patients can be diagnosed on the basis or poor Nitroblue tetrazolium (NBT) reduction which is a measure of respiratory burst. Interferon-gamma therapy has been successful.

Leukocyte Adhesion Deficiency

In this disease, leukocytes lack the complement receptor CR3 due to a defect in
CD11 or CD18 peptides and consequently they cannot respond to C3b opsonin.
Alternatively there may a defect in integrin molecules, LFA-1 or mac-1 arising
from defective CD11a or CD11b peptides, respectively. These molecules are involved in diapedesis and hence defective neutrophils cannot respond effectively to chemotactic signals.

Chediak-Higashi syndrome

Chediak-Higashi syndrome is marked by reduced (slower rate) intracellular killing and chemotactic movement accompanied by inability of phagosome and lysosome fusion and proteinase deficiency. Giant lysosomes (intracellular granules) are often seen (figure 6). The respiratory burst is normal. Accompanying NK cell defects and platelet and neurological disorders are noted.

DISORDERS OF COMPLEMENT SYSTEM

Complement abnormalities also lead to increased susceptibility to infections. There are genetic deficiencies of various components of complement system, which lead to increased infections. The most serious among these is the C3 deficiency which may arise from low C3 synthesis or deficiency in factor I or factor H.

A Step-By-Step Guide on Writing a Biology Research Paper

For many students, writing a biology research paper can seem like a daunting task. They want to come up with the best possible report, but they don’t realize that planning the entire writing process can improve the quality of their work and save them time while writing. In this article, you’ll learn how to find a good topic, outline your paper, use statistical tests, and avoid using hedge words.

Finding a good topic

The first step in writing a well-constructed biology research paper is choosing a topic. There are a variety of topics to choose from within the biological field. Choose one that interests you and captures your attention. A compelling topic motivates you to work hard and produce a high-quality paper.

While choosing a topic, keep in mind that biology research is time-consuming and requires extensive research. For this reason, choosing a topic that piques the interest of the reader is crucial. In addition to this, you should choose a topic that is appropriate for the type of biology paper you need to write. After all, you do not want to bore the reader with an inane paper.

A good biology research paper topic should be well-supported by solid scientific evidence. Select a topic only after thorough research, and be sure to include steps and references from reliable sources. A biological research paper topic can be an interesting journey into the world of nature. You could choose to research the effects of stress on the human body or investigate the biological mechanisms of the human reproductive system.

Outlining your paper

The first step in drafting a biological research paper is to create an outline. This is meant to be a roadmap that helps you understand and visualize the subject. An outline can help you avoid common writing mistakes and shape your paper into a serious piece of work. The next step is to gather information about the subject that will support your main idea.

Once you have a topic, you can start writing your outline. Outlines should include at least one idea, a brief introduction, and a conclusion. The introduction, ideas, and conclusion should be numbered in the order you plan to present your information. The main ideas are generally a collection of facts and figures. For example, in a literature review, these points might be chapters from a book, a series of dates from history, or the methods and results of a scientific paper.

When writing a biological research paper, you should use scholarly sources. While there is a lot of misinformation on the internet, it’s best to stick to academic essay writing service to get the most accurate information. Most libraries allow you to select a peer-review filter that will restrict your search results to academic journals. It’s also helpful to be familiar with the differences between scholarly and popular sources.

Using statistical tests

Using statistical tests when writing a biological paper requires that you make certain assumptions about the results you are describing. The most common statistical tests are parametric tests that are based on assumptions about conditions or parameters. About 22% of the papers in our review reported violations of these assumptions, and such violations can lead to inappropriate or invalid conclusions.

Statistical tests are important in biological research because they allow researchers to determine if their data is statistically significant or not. The power of these tests depends on the size of the dataset. Larger datasets produce more significant results. The power of these tests also depends on the assumption of independence between measurements. This is important because the results can be different if there are duplications or different levels of replications.

Hypothesis tests are useful in evaluating experimental data. They identify differences and patterns in data. They are useful tools for structuring biological research.

Avoiding hedge words

Hedge words are phrases or words used to express uncertainty in a scientific paper. They can help writers avoid making inaccurate claims while still being respectful of the reader’s opinion. However, writers must be careful to avoid using too many hedges. 

Listed below are a few guidelines to help you avoid these words:

  • Hedge words shift the burden of responsibility from the writer to the reader. 
  • Hedge words can be a sign of uncertainty or overstatement. They can also be used to limit the scope of an assertion. They also convey an opinion or hypothesis. When choosing a hedging strategy, be careful not to use words such as “no data” or “unreliable.” These words can convey a degree of uncertainty and imply that the findings cannot be confirmed.

The use of hedge words is common in academic writing. However, they hurt your audience. It is a linguistic strategy that writers use as a way to reassure readers. The goal is to guide readers and make them feel comfortable with the idea that the author does not know all the answers.

Choosing a format

Biological research papers have different formats, and you should choose one that suits the nature of your paper. It should be based on credible and peer-reviewed sources. The best sources to use for biology papers are books, specialized journals, and databases. Avoid personal blogs, social networks, and internet discussions, as these are not suitable for a research paper.

Biology research papers focus on a specific issue and present different arguments in support of a thesis. Traditionally, they are based on peer-reviewed sources, but you can also conduct your independent research and present unique findings. Biology is a complex field of study. The subject matter varies, from the basic structure of living things to the functions of different organs. It also explores the process of evolution and the life span of different species.

Formatting your bibliography

When writing a biological research paper, the format of your bibliography is crucial. It should follow a standardized citation style such as the “Author, Date” scientific style. The format should be arranged alphabetically by author, and you should use numbered references to indicate key sources.

Reference lists must be comprehensive and contain enough information to enable readers to find the sources themselves. Although the format is not as important as completeness, it can help readers quickly identify the authors and sources. Bibliographies are usually reverse-indented to make them easier to find.

In-text citations should include the author’s last name, preferred name, and the page number. Usually, authors do not separate their surname and year of publication. In addition, you should also include the location, which is usually the publisher’s office.

If a work has more than four authors, you should list up to ten in the reference list. The first author’s surname should be used, followed by “et al.” Likewise, you should list more than ten authors in the reference list.

When writing a biological research paper, it is important to ensure that your bibliography is formatted properly. When you write the title, you should use boldface and uppercase letters. The title should also be focused, not too long or too short. It should take one or two lines and all text should be double-spaced. You should also type the author’s name after the title. Don’t forget to indicate the location of your research as well as the date you submitted the paper.

How To Write A Scientific Biology Paper

Let’s try to figure out what essential features that biology essay contains.

First, this type of Biology essay is devoted to one particular problem or question, so the author’s position is not comprehensive. But often, one problem leads to the disclosure of many secondary issues, and the student should try not to “drown” in them but stick to a specific main position.

Second, the essay is a rather subjective genre. And this is its value. After all, the teacher expects from the essay writing a personal assessment of the specific biological topic, uniqueness, expression of an individual position, style of thinking and speech, free orientation in social science terms, and social events.

Thirdly, an essay requires ease of narration; that is, freedom in presenting one’s thoughts should be felt. The use of any formal settings can make a mini-essay “dry,” “stale,” and “non-scientific,” while the content should be captivating, sometimes even contradicting standard principles, and in this case, you can use any paper helper you need.

Fourth, essays on science topics should be peculiar in order to excite the reader, to give an opportunity to re-evaluate known facts, to challenge the truth, citing paradoxical definitions as proof.

Fifth, despite the paradoxical facts, the content must have inner harmony and consistency with the author’s personal judgments.

Sixth, the essay has such a trait as openness. Of course, as in any essay
or article, at the end of the essay, it is necessary to draw a conclusion so that any other author could continue to think about the issue disclosed, giving an analysis or supplementing
arguments.

The merits of the biology essay should include:

  • Availability of brief information about the author of the statement that became the topic of the essay (political figure, economist, philosopher, public figure);
  • Inclusion of his predecessors, followers, and opponents; – description of different points of view on the problem;
  • Multiple meanings of used concepts and terms in the context of the content;
  • Giving alternative solutions to the problem.

Criteria for evaluating essays

Before starting to write a biological essay, a student should be familiarized with the requirements for this type of task. More often than not, you can turn to practice assignments.

Scores for the essay are given in accordance with such criteria as the meaning of the statement is disclosed, your own position is presented with argumentation, and judgments and arguments are revealed with the support of theoretical provisions, conclusions and facts. But these criteria do not give students specificity. It should be remembered that the essay, as a specific type of task, requires students to express their skills and abilities.

Writing an essay starts with choosing a topic. The topics of the proposed problems are divided into categories: philosophy, sociology, economics, social
psychology, political science, and law. To prepare for writing an essay on biology, it is best for students to decide on two or three areas in which they are more successfully oriented, appealing to concepts and facts. Sometimes students choose a particular area of this science that they like to discuss topical issues on their own.

However, based on the experience of preparing for the essay, the student should try their hand in all directions, then the priority ones will be presented most clearly, and the student will put the emphasis already on them. Choosing
an essay topic is a complicated task. Pupils should be sure that they understand the chosen statement correctly, that they have sufficient social science concepts, and that they will be able to cite convincing facts and examples from history, social life, and their own experience.

Next, it is necessary to define the problem reflected in the statement, its relevance, and its scientific importance. Most often, the statement itself already contains a clue to the problem. In the first stages of preparation for writing an essay, it is necessary to pay attention of students to those terms that are used in the task. It is these concepts that need to be disclosed in the content of
the essay, and it is from these concepts that the argument is explored.

To build the logic of the presentation of the contents of the essay, students are helped by drawing up a plan or a kind of draft. The students have an opportunity to choose the sequence of arguments, facts, and examples, and this is where the unconventionality of the essay will come into play.

The three main positions of the structure



In my opinion, there are three main positions of the structure that should still be taken into account: the introduction, the main part, and the conclusion. This will make the work of the students much easier.

The introduction shows just how much the student understood the problem and reflected its relevance. Also, in the introduction, it is necessary to specify also own position on the submitted problem and to define the further directions of research.

The main part of the essay is a detailed study of the problem with its proof or refutation. This part of the essay structure is more voluminous and informative. Here the authors give their theses, determining the truth or falsity of the statement. The theses should be diluted with facts, phenomena of reality, and scientific evidence.

Facts should be interconnected, and it should be remembered that any fact has its validity only in a particular historical time. It is in this part that the definitions of concepts are revealed through the essential features of the subjects. Besides, the free use of social science concepts in the context of the content shows how complete the author’s knowledge is.

It is important that the concepts used are clear, correct, and generally accepted. A huge plus in writing an essay is giving examples. If the author has difficulty in this regard, you can use examples from your own life and accumulated experience. It should be borne in mind that examples must clearly relate to the analyzed problem.

The use of examples shows the free orientation of students in the social space and the ability to correctly assess events, processes, the actions of individuals.

The final part of the essay may contain brief conclusions of students on the topic, reflecting their own point of view, which is prospective in nature. Also, in conclusion, the author can offer his original solution to the problem.

The essay will become more interesting if the conclusions are bright, emotional, and unpredictable, with unusual twists. This will allow further reasoning on the analyzed problem (Man is only a part of a huge world, a world that is entangled in a thick web of mysteries and riddles. Will there be a spider to unravel it? Man…? What is it…? Who is it?…). Thus, the best way to write an essay is to do it sequentially.

The Best Biological Universities In The World

Every person dreams of choosing a profession that would not only always be in demand, and therefore highly paid, but also beneficial to society. One of such prestigious professions is the profession of a biologist. Their professionalism largely determines our health, development, and future. Therefore, it is not surprising that the profession of a biologist is the second most popular in the world.

Many decent biology students dive into the practical study so much that they don’t have time for other college assignments. Some of them simply google something like “write my paper with WritingAPaper writers” in order to keep up with their academic performance and save time for more essential college practices. 

However, not everyone can get this necessary and promising profession because it puts forward several requirements that only people with particular inclinations and temperaments can meet. So, we will take a look at the features of these professions and also take a look at the top-rated biological universities in the world.

What Personality Traits Should A Biologist
Have?

It is not difficult to guess that a biologist, first of all, must love nature and be interested in the appearance and development of life on Earth. In addition, a true biologist is characterized by:

  • analytical and logical thinking;
  • curiosity and patience;
  • accuracy and attentiveness;
  • observation and imagination;
  • a well-developed visual, imaginative memory;
  • assiduity and concentration abilities;
  • responsibility and honesty.

It should be noted that since the work of a biologist involves participation in laboratory research,
which often uses various chemicals, the specialist should not tend to allergies.

Advantages of the of the Biology Profession

As mentioned above, biology is an actively developing branch of science, which opens to specialists huge prospects for career growth and self-fulfillment. Another undoubted advantage of the biology profession is the demand for it. According to labor market experts, this profession, in the coming years, may become one of the most in-demand and highly paid.

An essential advantage of this profession is a great variety of institutions and organizations where you can show your talent and professional skills. Today, biologists are happily employed in research laboratories, environmental organizations, nature reserves, botanical and ecological gardens, research institutes, environmental organizations, agricultural industries, and educational fields (schools, colleges, universities).

Disadvantages of the Biology Profession

Even though biology is one of the most in-demand fields of science in the world, in some countries, this field is still in its infancy. So, biologists’ salaries are low, primarily if they work in public institutions (for example, in laboratories at research institutes or schools).

The job of a “practicing” biologist (a specialist who studies living organisms in their natural environment) involves frequent business trips. These specialists can be found everywhere: in the desert, in the tundra, high in the mountains, in the field, and at the experimental agricultural station. Naturally, conducting research in comfortable conditions is not always possible, so future biologists must be prepared for life in spartan conditions.

More often than not, theoretical training alone is not enough for successful employment for young professionals. Therefore, biology students need to take care of practical work experience in advance (i.e., while still studying to look for a job in a specialty as close to their future profession as possible).

The best biological universities in the world

American universities are leading the way among educational institutions, but other continents also have something to show for it.

Check out lists of the strongest universities in North America, Europe, and Asia.

1. Harvard University (USA)

Harvard University is considered No. 1 in the world in genetics, genomics, and bioinformatics, as well as in biochemistry and biophysics by US News & World Report. Harvard’s biotechnology education program allows students to pursue bioengineering, nanotechnology, and bioinformatics. The Department of Molecular and Cell Biology is considered the best at Harvard. This multidisciplinary approach trains not only scientists but also people for managerial positions in the biotechnology field.

2. University of Tokyo (Japan)

The Department of Biotechnology offers graduate programs in biomolecular research, biofunctionalism, and molecular and cellular biosciences. Students study DNA, protein engineering, and bioinformatics. Importantly, master’s students take international internships.

3. University College London (UK)

University College London is regularly ranked in the top 10 of various prestigious rankings of the best biotechnology universities. Students receive their first higher education in biochemistry (studying chemistry, biochemistry, genetics, and molecular biotechnology). The master’s degree in biotechnology specializes in critical areas like cell regulation, molecular cloning, and others. The most crucial area of study here is experimental biochemistry.

4. University of California San Francisco (USA)

The university offers some of the world’s best programs in biochemistry and biophysics, the fields closest to biotechnology. Molecular biotechnology programs and internships are by far the most popular. Graduate students have the opportunity to combine scientific research with professional business experience, allowing them to quickly find work after graduation in the rapidly growing biotechnology sector.

5. University of Pennsylvania (USA)

The university offers bachelor’s, master’s, and Ph.D. programs in biotechnology and a so-called “professional master’s degree” in biotechnology. Students can choose a major in molecular biotechnology, biopharmaceuticals/engineered biotechnology, or biomedical technology. A dual degree with Wharton University is also available.

6. Massachusetts Institute of Technology (USA)

Founded in 1998, the Department of Biological Engineering quickly became one of the best in the world – it couldn’t be otherwise at the best technological university on the planet (according to the latest rankings). It has first-class laboratory facilities in biomedical engineering, environmental and health sciences, microbiology, etc.

7. Johns Hopkins University (USA)

You are offered with undergraduate and graduate programs in biotechnology by The Center for Biotechnology Education at Johns Hopkins University. Students receive core knowledge in biochemistry, molecular biology, cell biology, genomics, and proteomics. Students also study applied science and the application of new technologies to business, as well as opportunities for overseas internships. There are also part-time and distance learning programs.

8. Rensselaer Polytechnic Institute (USA)

Rensselaer Polytechnic Institute was founded in 1824 and is considered to be the oldest technological university in the United States. The Center for Biotechnology and Interdisciplinary Sciences offers a number of programs, including a top-rated program at the interface between biotechnology and medicine.

9. Stanford University (USA)

Stanford University, one of the top universities in the world, offers an excellent program in the Department of Bioengineering. The program was jointly developed with the Department of Medicine and Engineering and focuses on engineering approaches to medical problems and biological systems. The university also offers tempting internship opportunities at leading companies in the industry.

10. University of Rhode Island (USA)

This renowned university offers several undergraduate and graduate-level biotechnology programs. Much research focuses on stem cell biotechnology, molecular biotechnology, and bioprocesses.

We hope you will easily get accepted to one of these universities and make your dream of becoming a successful biologist come true.

12 Compelling Reasons Why Studying Biology Is the Right Choice for You

If you are pondering whether you should start a biology major or maybe you’re pondering whether to continue because it’s not what you expected, this post is addressed to you. And I hope that after reading it, the answer to both questions is a resounding YES!

Studying Biology

Let’s begin!

1. It’s your calling

If you think it is, then don’t hesitate to act on it! Do you want to buy a college essay or other papers all the time because you are disinterested in your major? Nothing is as satisfying as dedicating yourself to what you are passionate about. Nothing. So don’t miss this opportunity. I’ve always said I’d rather be poor but happy with what I do than rotten with money and bitter at my desk. Don’t miss this chance to achieve personal and professional happiness by doing what you love most. 

2. It changes the way you look at everything

Being a biologist is a way of life. It is the lens through which you end up filtering everything around you. Studying biology will change you on a very deep level, and you will learn to see the world through different eyes. And trust me, it’s an experience worth having. 

3. Biology has opportunities

You can work in more than just science, as a teacher, or as a government employee. There are many career options, and some are waiting for you to discover them. It only takes courage and imagination. Working for one of the best essay writing services, you can also help students with their biology assignments. Opportunities are waiting for you to discover them.

4. You contribute your grain of sand to universal knowledge

Like all sciences, it opens up the possibility of becoming part of a trove of knowledge that humanity has been collecting since time immemorial. It is unlikely (though possible) that you will make a remarkable discovery, but you will certainly contribute to the building of knowledge, either by adding a brick or by getting more people to visit it: scientists, teachers, disseminators, environmental educators… 

They all contribute to the dissemination of this knowledge. Even conversations between colleagues over a few beers can get someone else to come and learn a little more about this amazing world we live in.

5. Great travel opportunities

Few professions require such high mobility, both voluntary as part of your studies and mandatory as you have to emigrate to other countries to make a living. With all the consequences that entail. All the great travelers I have met have a powerful aura around them, a powerful magnetism. Their outlook on life, their understanding of it, and their attitude toward other people and the world are imbued with all the experiences gained during their travels. Wouldn’t you like to be one of them? 

6. It’s fascinating

In biology, it doesn’t matter what you study, it doesn’t matter what you work on. Whatever you do, you will enjoy it. Of course, it’s not a bed of roses; it requires a lot of sacrifices and some struggle. But if you finally find your way and follow it, I assure you, you will live it intensely (for better or for worse). Many biologists I know, even if they don’t work in biology, retain the passion and connection to nature and life that they acquired during their studies.

7. It is a journey of discovery

And by that, I don’t just mean scientific discoveries, but personal ones as well. This is a very challenging career and profession. Unless you are one of those rare and genius geniuses who show up from time to time, you will have to constantly put your best foot forward. 

It will force you to explore your limits and get to know yourself better. But you will also discover new areas of knowledge that you thought you would never be interested in. You will learn a lot about yourself, I guarantee it.

8. It’s a lot of fun

Biologists have a very specific idiosyncrasy. No matter what country or field you work in, there are always some common traits that are common to almost all of us (although there are exceptions). I can tell you that the best parties I’ve been to have always had biologists in attendance.

I don’t know what things are like at your university, but while I was studying, when I was getting my degree, whenever a lot of biologists gathered, it always ended with a few beers: with people from your science group, after a paper, after a conference, on a field trip… And I can assure you that I was with people of all ages and from all walks of life.

9. You will meet many people

As with any career, you will say. However, ours has many features that make networking in biology something fundamental. Much of the work you will do during and after your degree will have to be done in the company of other people. Collaboration is fundamental in the biological sciences: articles, conferences, research, or conservation projects… You always need a team. So try to choose the best.

10. You will discover wonderful spots you never saw before

Once you begin to familiarize yourself with the flora and fauna and begin to visually identify species without the help of guides, a whole new world opens up before you. It is when you walk down the street of your town or village that a whole new life unfolds before you. 

Where you once thought there were only house sparrows (Passer domesticus) or loons (Diplotaxis virgata), now a whole plethora of living creatures unfolds that previously went unnoticed before your astonished eyes. Then you learn about the little living paradises, those islands of nature amid civilization, which surround you and are waiting for you to find them.

11. It’s an adventure

As you may have heard. The job of a biologist is one of the most adventurous professions, in the most romantic sense of the word. Remote and inhospitable places, which can range from the most enclosed jungle to the icy expanses of Antarctica. Challenging situations, sometimes not without risk, to get the data you need. Adrenaline, discovery, excitement. If you really want it, you can try a little bit of all of them.

12. Direct contact with nature

What better way to be one with nature than to work as a biologist? You can work with the kinds of animals you like, from the most common to the most exotic. Plants or animals-you choose the path. Or even those creatures that straddle the blurry line between living and non-living, such as viruses or prions. From the largest to the smallest. From your lab or deep in the woods. To study life, you have to go where it is. What other contact can you ask for?

Final words

If it is not yet clear to you, perhaps this career is not for you. But if reading any of these reasons made you feel identified, making your heart beat faster, or made you smile, then don’t hesitate and act. Because biology must be lived, and how else can you study life?