7 Cell Raps To Help Memorize The Functions Of Cells

If you’re studying for a science test, one of the best ways to help remember the material is by setting to music! That’s right; cell raps can help you remember the names of the organelles located in each cell, as well as their functions.

We’ve rounded up our top seven picks for cell raps that we think you’re going to love.

 

via GIPHY

Best Cell Rap for Sixth-Graders: Cells Cells by Crappy Teacher

As YouTuber CrappyTeacher (Emily Crapnell) explains in her cell rap video, she created this video to help her sixth-grade science students learn the different parts of a cell. At over 5.7 million views, it seems that this cell rap has caught on with more than just Crapnell’s students! We can’t blame people for watching it; it’s catching and makes science–dare we say it?–fun!

“Today’s the day,” the rap begins; “let’s talk about the building blocks of life–cells that make us.”

The cell rap chorus covers some of the most vital parts of cellular biology. It explains that cells are made of organelles, and mentions cytoplasm, the nucleus (“controllin’ everything”), the membrane, the vacuole (“we can float around for hours”), and chloroplasts by name.

The next chorus explains that there are two different types of cells–animal and plant cells, while the final three stanzas are devoted to explaining in more details with each part of the cell does. “The cell membrane is the border patrol,” raps CrappyTeacher, and then later, “The mitochondria’s something every cell needs, breaking down the food and releasin’ energy.”

Over second thousand people have taken the time to comment on this cell rap. Many mention how they heard it years ago and still remember it, speaking to the catchy lyrics and the arresting beat. While designed for sixth-graders, the content is sophisticated enough that even college students report finding it helpful!

We also feel like it’s one of the best mixes of catchy lyrics and useful information, managing to find a good balance between repetition and new information. Plus, it provides a great video with very helpful images which will further solidify the information in your mind.

The rap can be viewed here or may be purchased.

Best Karaoke Option: The Cell Song by Glenn Wolkenfeld

The Cell Song, created and sung by Glenn Wolkenfeld, isn’t a cell rap–but it is a fantastic way to use the power of song to help commit the parts of a cell to memory! And with over two million views, we’re not the only people who think so.

The song is a folksy, bluesy tune where the singer asks what happens when he goes into a cell. “Who drives this bus,” sings Wolkenfeld, and then he “found myself talking to the boss, the nucleus.”

Unlike some of the other cell raps available, The Cell Song explains that chromosomes stores genetic information, the ribosomes make proteins, and the lysosome use enzymes to dissolve, and centrioles organize chromosomes into spindles.

Wolkenfeld also uses The Cell Song to explain how rigid cell walls allow plants to grow extremely tall, and the purpose of green in the plant cell. “I went into a plant cell, ‘why’s it so green?’” sings the artist. “‘Cause I make food from sunlight,’” answers a green chloroplast.

The video is filled with helpful drawings and diagrams to further illustrate each concept. Wolkenfeld, as we mentioned already, also offers a karaoke version, which is the same version, but instead of Wolkenfeld singing, the lyrics are on the screen.

The Cell Song, like Cells Cells by CrappyTeacher, has the ability to combine great video content with helpful, relevant information about cells.

You can find The Cell Song here, and the karaoke version here.

Best Song With Video: The Parts of a Cell Song by Jam Campus

The Parts of a Cell Song is a cell rap created by an organization called Jam Campus. It’s one of many Jam Campus creations; in fact, the YouTube channel creates educational videos on everything history to science to mathematics.

With over 54,000 views, The Parts of a Cell Song is catchy and well-loved. What we especially love, in addition to the self-made music, is the high quality illustrated video! Any time you can marry great visual images with catchy lyrics, you increase the likelihood of you remembering the information.

The Parts of a Cell Song gets right down to business, stating in its first line, “here’s what each cell contains, outer layer is the cell membrane.” The lyrics point out where cells get their energy (mitochondria), and what ribosomes do (help with protein synthesis).

We also appreciate this lyric, which helps to sum up the parts of a cell, something most cell raps don’t do:

Cell membrane, mitochondria, lysosomes and the ribosomesCytoplasm, nucleus, E.R. and Golgi body, and the nucleolus

​We especially appreciate how accurate the presented information is here (many cell raps mistakenly identify ribosomes as making proteins; however, they simply help in the assembly of polypeptides, chains of amino acids, which are the building blocks of protein).

Best for Repetitive Learning: The Cell Rap with Mr. Simons’ Fifth Grade Class

Mr. Simons and his fifth grade have teamed up to create another great cell rap, available on YouTube. This cell rap has approximately 468,000 views, and we understand why–out of all the cell raps we’re sharing today, this one is probably the most likely to get stuck in your head!

​Every song has to decide how to balance repetition with new information; as you’ll see later, some of the cell rap songs we’ve rounded up choose to focus on including as much data as possible. This rap, however, from Jake Simons, focuses on repetition.

In fact, we feel it focuses a little too much on repetition, but it’s still a great rap that will help cement many of the things you’re learning about cell biology into your memory.

​This five-minute rap features the cytoplasm, the nucleus, the membrane, the vacuoles, and the mitochondria of the cell. Here’s an example of a lyric:

“Just like us, the cell has energy. The mitochondria takes the food and puts it where it needs to be.”

Here’s another line from the cell rap, this one memorably explaining how the cell membrane works:

“There’s a thing called a membrane that holds it all in place so none of us will ever complain.”

​Is this the cell rap to turn to if you need to memorize complicated material? Probably not; but it is a great option for younger students or people who need just the basic parts of a cell!

​Best Use of Additional Resources: The Cell Song by Keith Smolinski

​The Cell Song was written and recorded by Dr. Keith Smolinski as part of a doctoral study to research how music can help students learn complex science concepts. In addition to The Cell Song, which features the parts of a cell, there are another nine songs sold in an album called Biorhythms: The Music of Life Science.

Songs in Biorhythms cover everything from cellular division, to the digestive tract, to the ecosystem. The song we’re featuring, The Cell Song, isn’t a cell rap, but it is well-performed, catchy, and interesting to listen to!

While the accompanying video doesn’t include images, it does utilize the lyrics on screen. In just two minutes and nineteen seconds, Dr. Smolinski manages to cover everything from the nucleus to the cell membranes.

In The Cell Song, listeners learn that the nucleus contains the genetic code, the mitochondria are the power plants of the cell, and the vacuoles store food and water. We also learn that the ribosomes make proteins, the Golgi bodies pack and ship the proteins, and the endoplasmic reticulum carries them.

Plus, the song teaches that lysosomes are janitors, cytoplasm is gel-like, and cell membranes help regulate what comes in and out of the cell.

​In the notes section of this video, Dr. Smolinski also explains that additional teacher’s resources are available on his website, including a Teacher’s Guide for The Cell Song. All of Dr. Smolinski’s resources are based on the National and State of Connecticut Science Standards, so you can be sure you’re getting accurate and helpful information.

Best Rap Alternative: Organelles Song by ParrMr

​ParrMr, a YouTube creator, has garnered over one hundred thousand subscribers thanks to her (or his!) ability to put science lyrics to popular songs. If you cringe over cells raps or want music you’re already familiar with, you can find videos on everything from Pangaea to the atmosphere to the planets.

ParrMr’s songs are set to hits like Forget You by Cee Lo Green, Toothbrush by D’NCE, and Jealous by Nick Jonas. The one we’re featuring here is Organelles Song, set to Counting Stars by OneRepublic.

The music is easy to remember if you’re already familiar with the song–our one complaint, however, is that the lyrics have very little repetition. This has the upside of packing a ton of information into the four-plus minute song, but if you’re trying to make sure the material sticks, this might be a downside.

​“Look inside a cell,” sings ParrMr, who created this song for his or her sixth-grade students, “and you will see…organelles have jobs, yeah, organelles have…jobs.”

​The next lines focus on how plant cell walls and cell membranes protect the line like a fence, letting the right things in and out. ParrMr covers vacuoles, lysosomes, the nucleus, chromatin, DNA, and ribosomes.

The final stanza explains proteins and their relationships to the endoplasmic reticulum, Golgi bodies, and cytoplasm. Mitochondria and chloroplasts are also mentioned.

​Organelles Song by ParrMr has racked up over 700,000 views, and for a good reason.

Runner-up Rap Alternative: Cells Song by ParrMr

Another much-loved option (four hundred thousand views!) by ParrMr, also for a sixth-grade classroom, this is another song about cells set to hit music. This one, called Cells Song, is set to Sail by AWOLNATION.

In it, ParrMr sings about cell membranes, cytoplasm, organelles, mitochondria, endoplasmic reticulum, ribosomes, and Golgi bodies.

“Cells cells cells cells cells,” he sings, before starting another chorus about vacuoles, the nucleus, and lysosomes.

​Here is the final stanza:

Capturing Sun’s energyChloroplasts in plants and treesAnd cell walls giving box-like shape, rigid

If you’re a fan of pop or dance music or are simply looking for a non-rap alternative to cell raps, this is a great option. It’s short on useful information, but what is included is presented appealingly, and will be likely to stick!

Thanks to these seven awesome cell raps, we have a feeling you’re going to ace your next quiz or test. We’d say good luck, but we don’t think you’ll need it!

Featured Image Source: Pixabay.com

How To Study For Biology: 5 Easy Tips

Some of us thrive in certain types of classes, while others may need to work a little harder. Biology is something you may or may not have a passion for, but if you want to do well in school, you’ll need to do well in the class! As you may soon discover (if you haven’t already,) Biology class may feature different concepts from anything else you’ve heard before. That’s why you must understand how to study for it. There’s no magic trick to doing well in biology. You need to just follow these five easy tips to help you ace your next exam.

How To Study For Biology In 5 Easy Ways:

1. Come To Class Prepared And Take Notes

Sometimes taking notes can seem a bit over the top. After all, most of what you’ll be taking notes on will be in the book right? And if it’s not in the book, then you’ll surely be able to find it online. While all of that is true, coming to class to take notes will help you discover how to study for biology. Taking notes will:

person holding books

Image Source: unsplash.com

Keep You Engaged

Let’s face it, there are times when class is boring and your mind may wander. Every once in a while, you’ll have a lecture that completely puts you to sleep. You’d rather put your head down, look on your computer, text with a friend or do anything else than be attentive in class. Don’t worry, you’re not alone!

However, if you want to up your grade on your next biology exam, then you’ll want to take notes primarily because the activity itself forces you to keep your mind engaged with the material. You’ll be more likely to remain focused on the task at hand, and that is key to encoding the test material into your long-term memory.

More Likely to Retain Information

No matter how good you are, you simply will not retain everything you hear. In fact, studies show that we actually retain little of what we hear. If your professor provides visual aids with what they talk about it helps, but still there is a limit to what you’ll remember. When you combine taking notes with what you hear in a lecture (and see in visual aids), it’s proven that you’ll remember more of the material. That is because you’re forcing yourself to be physically engaged with the material. If you want to know how to study for biology, then you must be active in your studying — and that starts with taking notes!

​It’s on the Test!

​Above all else, the information your professor takes the time to talk about will be on the test. By taking notes in class, you’ll have your very own blueprint for which highlights to study because they will be on the test. So, head into class ready to take notes. You want to know how to study for biology? This is absolutely one of the best ways to prepare yourself.

2. Learn The Important Terminology And Drawings

​In every class you take, there will be certain lingo you will encounter — probably words you’ve never heard before. These words are specific to biology and key in your studies. You’ll want to learn them. The same can be said of any drawings that are presented by the teacher in class. You’ll get a better handle on how your professor gives tests after the first one.

lady holding a pen

Image Source: ​pixabay.com

But if you haven’t taken your first test yet, then it’s important to study all terms and drawings. Then, after you see what was chosen for the exam, you’ll be able to fine tune how to study for biology ahead of future exams.

​Flash Cards

​One of the best ways to learn new and sometimes technical terminology is with the aid of flash cards. Write the new word on the blank side of the card, then flip the card to its ruled side and write the term’s definition, including any examples that make it clearer.

And, here’s the kicker: each time you add new words to the deck, take a couple minutes to go over the previous cards you’ve written. This way, you won’t feel like you’re cramming 100 words at once, but you’ll just be adding a few new definitions to your vernacular at a time.

Although most textbook softwares allow us to make electronic flash cards now, it is more effective for most students if they write the cards themselves. The process of doing so takes time, we realize, but doing so helps encode the information into our brains. It’s been proven that, the way our brains and memory work, anatomically, it is easier to build our learning and understanding of new words a few at a time during multiple visits to those words and their meanings.

3. Go From General To The Specifics

​When it comes to the best way of how to study for biology, one thing you want to avoid is trying to get too specific at the start. You need to understand the basic concepts before zeroing in on something specific. It would be like trying to do calculus without understanding addition and subtraction. So, start with the basic, early stuff, and then ease your way in. Want to know how to study for biology in this way?

​Look Back at Previous Information

If you’re trying to study something specific and it’s not making any sense, then it means you probably don’t remember the general concepts behind it. That’s okay. Everyone goes through it. It just means you need to go back and brush up on some information so you have some context for the new material. It’s better to cover some information again rather than to force yourself to memorize specifics of which you have no real understanding.

​In learning how to study for biology, you’re not trying to just do well on your exams. Your overall objective should be to learn and retain the material for use in your career later on. Attempting to remember something specific without knowing the general concepts is a bad idea, because you’ll confuse yourself and be much more likely to scramble it up on exams and, worse, in real life. So never feel bad or ashamed that you need to go back and brush up.

4. Take Advantage Of Lab Time

​Undoubtedly, there will be open “lab” times throughout the semester. These are times beyond the class period that are great for those who know how to study for biology. Chances are, the lab time is not even required, but we highly recommend you take advantage of it. Open labs are the best way to process information you’ve learned, retain that information (encode it into your long-term memory) and to understand the concept fully.

woman inside the laboratory

Image Source: ​pixabay.com

​Go with Someone

​One of the best ways to take advantage of lab time and to improve how to study for biology is to go with someone else who is interested in doing well in the class, too. By going to lab with a classmate, you will feel accountable to someone else and more than likely you will go if you feel it is an obligation to someone other than yourself. There’s the added benefit of you both being able to keep each other on track.

5. Strategize Using Past Exam Questions

​Every professor is a little different in how they put together their exams. It will take a test or two before you can catch on to how an individual professor prefers to test, how he/she phrases their questions and how specific they will get in quiz material. To do your best on your exam, you’ll want to look at past exams and the questions on those. These exams will offer your insights into how to perform well and is one of the best ways we know how to study for biology.

person holding ipad

Image Source: ​pixabay.com

Keep Your Old Tests Handy

Look over your previous tests. You’ll begin to see your professor’s patterns. If you have been taking better notes, then you’ll also discover how they focused on certain topics in class and then used this information on tests. Armed with the combination of your old tests to study and your current notes, we bet you’ll be able to perform exceptionally well on your next exam. This is particularly true and important if your final exam is cumulative.

​​​No Exams? Study Everything

Now, if you haven’t taken an exam yet, then you won’t be able to gauge your professor’s testing techniques and likely material. If you know someone who has taken the class from the same professor before you, it doesn’t hurt to ask them about the tests and what they focused on. You can even ask them if they have an old test. While the test questions will probably change (so it’s no use trying to study the order of answers or anything like that,) you can at least see how a professor asks questions, what they focus on and might be critical to study.

BONUS TIP: Buddy Up!

With the five tips we’ve given you, we are certain you know how to study for biology better. But we will give you one more piece of advice: buddy up!

five people in a group study

Image Source: ​pixabay.com

If you make a friend in class with someone who is interested as much as you are in making a good grade, you’ll undoubtedly do better. You’ll have a backup for note taking if you have to miss class due to illness, you’ll have someone who can quiz you with flash cards, you’ll have someone who can refresh your memory (and vice versa) over general concepts so you can better understand specifics, you’ll have a buddy that encourages you to attend labs and you will have someone to help you analyze previous tests.

​Go Get That A!

​If you’re looking to improve your performance on your next bio exam, you’ll need to study. If you put forth the effort in studying the correct way, then you’ll do just fine. And, the best part is, these tools we’ve given you will help you do well in all your other classes, too!

Your Guide To Your First Earthworm Dissection

META: follow our handy guide to dissecting your first earthworm and learn some interesting things about them too.

Earthworms play essential roles in many ecosystems. They help introduce oxygen to the soil and mix it up. As they tunnel through the ground, they enrich the soil and push it toward the surface where it’s easier for plants to get to the nutrients. You can see the organs that help these worms do their jobs by dissecting an earthworm.

Safety First

Safety is critical in all aspects of our lives. It may seem trivial in a controlled environment like a school biology lab, but it’s not, and all safety rules should be followed. They are in place to protect you and your classmates, so don’t skip any regulations just because you think it will be ok or those rules don’t seem to apply to your circumstances. The basic common-sense rules are:

  • Wear safety gear when necessary like goggles, gloves, and aprons.
  • Most preserved specimens contain formaldehyde, so wash them first.
  • Do not play with lab equipment or instruments such as scalpels and scissors.
  • Do not eat any parts of your specimen. Yes, there is an apparent reason for this rule.

laboratory safety measure

image via Pixabay

Your lab should have the rules and safety measures available plus your instructor will go over them with you. Don’t assume the only rules are the ones we list here. The type of lab and type of specimen determine the rules. Ask for a copy of the rules if you don’t see one posted in the lab. Your teacher should be close by most of the time to help you guide you as well.

Always wear safety goggles and gloves. If you have to carry a sharp instrument, hold it with the pointed end pointing down and away from your body. Don’t rush or run while holding a scalpel or scissors. Never carry a knife or scissors by any part other than the handle. Scalpels are razor sharp, and it only takes a split second for them to cut you open.

Keep your station clean and tend to any spills immediately unless they pose a breathing hazard. Dispose of any blades, gloves, aprons, and specimens according to the established rules in your lab. Your teacher will probably explain all the rules to you, but don’t wait to ask if you aren’t sure what to do. Teachers are there to help educate you and keep you safe.

Earthworm Dissection Guide

Earthworms are great for helping you understand simple organisms and basic anatomy. They’ll help you get a grasp on lab safety before you progress to larger specimens like pigs or frogs. As a bonus, they’re small and soft, so handling them is much more comfortable as well.

The first step is to examine the exterior of the earthworm. Earthworms are segmented works, so they look like a long stack of small rings. They don’t have a head or any limbs, but they do have a fascinating exterior anatomy to study. The anterior end of the earthworm is a little fatter than the posterior. When you locate the anterior end of the work, pin it to the dissecting pan or tray.

earthworm in laboratory

image via Flickr

Earthworms are annelids which means their bodies are composed of multiple ring-like sections or segments. This part may not be on your teacher’s list, but it’s always interesting to count the segments while you study the exterior anatomy of the earthworm. While you count, notice the small setae on the ventral surface. These little bristles help the worms move through the dirt with ease.

Each segment along the worm’s exterior has small pores. These pores excrete the sticky film you find when you run your finger along a live worm. You may need a magnifying glass or small microscope to see them. It depends on the size of your earthworm specimen and your eyesight as well.

From the anterior end of the worm, count your way down to segment fourteen. Typically, this is where the oviducts are located. The oviducts release the eggs when the worm reproduces. The exciting part is the next segment after the oviducts; it contains the sperm ducts. Earthworms have both male and female reproductive organs.

Further down the worm at segment 31 is the clitellum. It secretes a sticky mucus that binds two earthworms together while the mate. It develops a cocoon to hold the eggs and sperm after mating is finished. Earthworms are simple worms, but fantastic at the same time. Their exterior anatomy is fascinating to study.

person holding earthwork in hand with soil

image via Flickr

Earthworms are hermaphroditic which means they have both female and male reproductive organs. Eggs come from the ovaries inside segment fourteen, sometimes thirteen. It can be hard to count the segments on small worms. Worms have testes which can form in segments near the oviducts. Study these segments and see if you can find the reproductive organs on your specimen.

When worms mate, they get stuck together briefly to help keep the reproductive organs aligned. Sperm from both worms travels into the other worms seminal receptacle. The clitellum creates the cocoon which moves along the outside of the worm to collect the semen and the eggs. The eggs are fertilized outside the worm in the cocoon.

By now, you should have a good understanding of the exterior anatomy of your earthworm specimen. Remove the pin from the anterior end of the earthworm and place it on its ventral side, then put the pin back in the anterior end of the worm. The ventral side of the worm is a little flatter than the dorsal side, and it may be a lighter color.

Carefully and slowly make a shallow incision using your scalpel from the anterior end of the work to the clitellum. Never cut toward your body or fingers. Be extra careful and keep the incision shallow, so you don’t cut into the worm’s digestive system and internal organs. Use your forceps to spread the worm open and pin the sides of its body to your dissection pan or tray.

close up photo of earthworm dissection

image via Flickr

The inside of the worm should be exposed now. You may want to lightly sprinkle water over the worm to keep it from drying out while you study the inside of it. The interior part of the walls is called the septa. See if you can tell the difference. If possible, ask your teacher to point them out and help you see the different layers.

Now, the internal digestive organs should be exposed and available for study. Starting with the mount on the anterior end of the worm, locate the organs. The first organ you see is the pharynx. The worm’s esophagus protrudes from the pharynx. About halfway down your incision are the crop and gizzard. Skip the other organs for now and find those two.

The crop is essentially a stomach. It stores food until the food is moved to the gizzard which grinds it up. The food leaves the gizzard and goes into the intestine, much like it does in humans, and travels to the anus. Along the way, the worm’s intestines absorb nutrients from the food the gizzard crushed and ground up. Earthworms don’t eat dirt. The consume organic materials found in the soil.

Make your way back up to the crop. If you look above the crop on the anterior side, you’ll find five pairs of aortic arches. This is the worm’s version of a heart. The hearts are located around the esophagus, and they connect to the dorsal blood vessel. That’s the worm’s version of an artery. Most earthworms can take direct damage to half their aortic arches and live.

Move your attention back to the pharynx at the anterior end of the worm. Locate the cerebral ganglia beneath the pharynx on the dorsal side. You may need to use your forceps to move some organs around to get a good look at it. The ventral nerve starts at the cerebral ganglia and runs the length of the worm. It may be hard to see if it is too small.

They are simple creatures speaking purely on their anatomy, but how their bodies and mating works are truly amazing. If you have time, go back over this tutorial again and study the worm longer. When you finish exploring, make sure you clean your workstation and dispose of your specimen correctly. Dispose of your lab gear according to the lab rules. Wash your hand thoroughly with soap and water.

Some Final Notes

Earthworms are vital to the health of our soil. The improve drainage, help stabilize the land, and add nutrients to the ground. Worms feed on organic materials they find in the dirt. Their bodies use the nutrients they need and deposit what’s left back into the soil as waste. Fortunately for plants, that waste is usually nitrogen-rich along with other nutrients plants need to grow.

Their worm tunnels help loosen the soil which aids plants in root development. We could go on and on about the benefits of earthworms. If you follow our guide to dissecting earthworms and read our interesting facts along the way, we’re sure you’ll be able to dissect an earthworm specimen safely. You may even appreciate these simple creatures a little more when you are done.

Questions To Study For A Brain Anatomy Quiz In AP Biology

Questions To Study For A Brain Anatomy Quiz In AP Biology

human brain

image via: pxhere.com

Taking AP Biology? Have a brain anatomy quiz coming soon? We’ve got 17 questions to help you study for it, plus some clever tricks and tips for studying smarter, not harder!

Parts Of The Brain

parts of human brain

image via: pixabay.com

One of the first things you should have to ace a brain anatomy quiz is a thorough grasp of the parts of the brain and each part’s function. Here are some of the questions you might expect:

1. Where Is The Cerebellum Located And What Does It Do?

human intelligence

image via: pixabay.com

The cerebellum is the part of the brain situated at the back of the head. It receives sensory information and regulates your motor movements. The cerebellum also controls balance and coordination, helping you to enjoy smooth movements.

2. Which Part Of The Brain Processes Visual Information?

The occipital lobe lies underneath the occipital bone. It is part of the forebrain (you have two, technically; one at the back of each cortex) and is responsible for processing visual information. Here’s a helpful memory device: the “o” in occipital can remind you of the “o” in optometrist or ophthalmologist.

3. If A Person’s Frontal Lobe Is Injured, What Functions Might He Or She Lose?

person in front of paper works

image via: pixabay.com

The frontal lobe can be found in the front of the brain, in each cerebral hemisphere. A deep groove called the central sulcus separates it from the parietal lobe, and another groove called the lateral sulcus separates it from the temporal lobe. A part of the frontal lobe known as the precentral gyrus contains the primary motor cortex, which controls specific body parts’ voluntary movements.

The frontal lobe is responsible for reasoning, higher order thinking, and creativity, so if somebody’s frontal lobe is damaged, he or she could have difficulty making decisions and reasoning.

4. What Are The Gyrus And Sulcus And How Do They Help The Brain?

Gyrus are the ridges on the brain and sulcus are the grooves (also seen as furrows or depressions). Together, their up and down “motion” are responsible for the folded, “spaghetti” appearance of the brain.

They are, in fact, an extremely clever way of making the most of very limited space. The brain is limited to the area inside your cranium, but the folding of the brain tissue allows a much greater surface area for cortical tissue, allowing additional cognitive function even in a relatively small space.

The human brain begins as a smooth surface, but as the embryo develops, the brain begins to form the deep indentations and ridges we see in the adult brain.

5. What Part Of The Brain Controls The Primitive Parts Of Our Body?

human body with light bulb head

image via: pixabay.com 

Pons is the Latin word for bridge, and that’s exactly what the pons appears to do in the brain, as its physically connected to the brainstem. Like any good bridge, the pons contains neural pathways to move signals to the medulla, cerebellum, and thalamus.

Many of the nuclei contained inside the pons are responsible for relaying signals, as we’ve already described, but other nuclei play roles in primitive functions that we don’t normally consider being within our control, such as respiration, sleep, bladder control, and others.

6. What Is The Corpus Callosum?

The corpus callosum sits underneath the cerebral cortex. It’s about 10cm long and is a thick, tough bundle of fibers that connects the cerebral hemispheres (right and left), enabling them to communicate with each other.

It has over 200 million axonal projections, making it the largest white matter structure.

7. Which Part Of The Brain Is The Newest From An Evolutionary Perspective?

orange and black question marks on a black ground

image via: pixabay.com

The cerebrum is the part of the brain that is outermost. In it, the brain can store memories, call upon senses, and establish self-awareness. High order functioning can also take place here and its known for being larger in musicians and left-handed individuals. It is also considered to be the most recent brain development.

8. How Many Lobes Is The Brain Comprised Of, And What Are Their Names And Functions?

Inside the brain is found the occipital lobe (see question #2), the frontal lobe (see question #3), the parietal lobe, and the temporal lobe. The parietal lobe sits behind the frontal lobe and above the temporal lobe. It is where the body becomes self-aware and plays an important role in language processing.

The temporal lobe plays a role in the processing of sensory input, helping the brain to translate these inputs into meaning. If, for example, you smell apple pie and think of your grandmother, you have your temporal lobe to thank!

9. Which Part Of Your Brain Acts Like A Supercomputer?

human brain as supercomputer

image via: pixabay.com

The thalamus is the small organ at the very center of your brain that acts as a supercomputer or switchboard, relaying signals throughout the brain. It is one of the most important parts of the brain and regulates motor signals, sleep, and consciousness.

Closely related to the thalamus is the hypothalamus, which sits just underneath the thalamus and regulates the pituitary gland and homeostasis.

10. Which Part Of The Brain Helps You Sneeze?

The medulla oblongata (medulla is Latin for “middle”), and the medulla oblongata is located on the brainstem close to the cerebellum. It is responsible for involuntary or autonomic processes, which include vomiting and sneezing. It also helps with breathing, cardiac functions such as heart rate, and blood pressure.

 The Central Nervous System

light bulb in a wooden surface

image via: pixabay.com

The central nervous system is another important subject likely to show up on a brain anatomy quiz. The questions below will help you better prepare.

11. What Is The Central Nervous System (CNS) Comprised Of?

The brain and the spinal cord make up the CNS, which is protected by the skull and the spine’s vertebral canal. It is the command center of the entire body, regulating all activity and processing all sensory inputs.

 12. What Role Does The Midbrain Play In The CNS?

smiling woman

image via: pixabay.com

The midbrain controls visual reflexes (including automatic eye movements, such as blinking and focusing). It also contains nuclei that link parts of the body’s motor system, including both cerebral hemispheres.

13. What Is A Neurotransmitter?

A neurotransmitter is a chemical that a nerve fiber releases when a nerve impulse arrives. It diffuses across the junction or synapse so that the impulse may pass to the next nerve fiber, muscle fiber, or other structure. Both neurotransmitters and inhibitory neurotransmitters are found in the brain.

14. What Is The Difference Between Dopamine And Serotonin?

person head with white question mark

image via: pixabay.com

Dopamine and serotonin are both powerful neurotransmitters. Serotonin impacts your sleep, arousal, hunger, and mood, while dopamine impacts your brain’s pleasure and reward system, your learning and attention, and movement.

15. What Is Glutamate And Why Is It Important?

Glutamate is the most abundant neurotransmitter found in the CNS; in fact, it accounts for more than 90% off all the synaptic connections in your brain! Some parts of the brain, including granule cells found in the cerebellum, rely on glutamate almost exclusively. Glutamate also plays a vital role in memory and learning.

16. Can You Name The Most Common Inhibitory Neurotransmitter In The Brain?

boy with different books

image via: pxhere.com

GABA (gamma-Aminobutyric acid) is the most common inhibitory neurotransmitter found in the brain. It is considered inhibitory because it helps to calm or reduce neuron excitability. This means it plays an important role in calming anxiety. It also is responsible for the regulation of muscle tone.

17. What Is The Neurotransmitter That Triggers Our Fight Or Flight Response?

The fight or flight response is also called the acute stress response or hyperarousal; it is a physiological reaction that occurs when the brain perceives an imminent threat. Epinephrine (also known as adrenaline) is the neurotransmitter most responsible for this response. It can signal an increase in blood flow to muscles and greater blood flow through the heart, among other things (this is why your heart starts to beat quickly when you’re afraid).

The Quick Guide To Studying Smarter

man imaginations

image via: maxpixel.net

If you’re reading this article, you’re already well on your way to preparing for your brain anatomy quiz, but here are a few more tips to help you get the most out of your time studying:

Get Lots of Rest

Sleeping instead of studying sounds counterintuitive, but without sleep, your brain will have a hard time committing what you’ve learned to memory. In fact, one of the best things you can do to prepare for a test or quiz is to get a good night’s sleep the night before!

Use Memory Devices

We’ve already hinted at a few tricks for helping your brain remember facts (did you notice them in the questions above?), but mnemonic devices and facts set to music help those boring facts stick much better than just rote memorization.

Setting the major parts of the brain to your favorite song, for example, can help pique your brain’s interest and increase emotional arousal, increasing your odds of remembering the information!

Finally, make it real. Drawing the brain, using models of the brain, or reading stories about people who have injured certain parts of the brain are all ways to make abstract concepts seem real–and make you more likely to remember them. Good luck!

Protein Synthesis Worksheet: Definition, Examples & Practice

Meta: Need to learn how protein synthesis works? We’ve got your complete guide to the process on our protein synthesis worksheet, including the difference between DNA and RNA, important misconceptions about mutations, and an explanation of the central dogma of biology. Plus, get practice exercises and quiz questions. 

 

What is Protein Synthesis?

 

Protein synthesis is the construction of proteins within living cells. The process consists of two parts; transcription and translation.

Proteins are an important organic compound that exists in every living organism. They are an essential part of the majority of cell functions. Specific proteins are needed for particular functions. Proteins are made up of long chains of amino acids which can be arranged in either a linear pattern or can be folded to form a more complex structure.

Proteins can be complex in structure and so are filtered into four categories – primary secondary, tertiary and quaternary.

Protein synthesis is a biological procedure which living cells perform to create new proteins. When studied in detail, the chemical synthesis of proteins process is extremely complex. The process begins with the production of new and different amino acids, some of which are collected from food sources.

The process requires ribonucleic acid (RNA), deoxyribonucleic acid (DNA), and a specific set of enzymes. All the different types of ribonucleic acids are needed for protein synthesis to work effectively. These are messenger ribonucleic acid (mRNA), transfer ribonucleic acid (tRNA), and ribosomal ribonucleic acid (rRNA).

 

 

Protein Synthesis: Definition, Examples, and Practice

Let’s check out a couple of important definitions to better understand protein synthesis.

Most protein synthesis worksheets will require a working understanding of the following definitions:

Central Dogma of Biology

A polypeptide encoded in a gene is expressed in a directional relationship called the central dogma of biology. It recognizes that information moves from the DNA to the RNA to the protein.

DNA

Deoxyribonucleic acid (otherwise known as DNA), is the carrier of genetic info found in almost every found living organism to date. It is present in the nucleus of cells and is self-replicating, meaning it’s integral to protein synthesis.

RNA

RNA is ribonucleic acid, and it’s present in every living cell discovered to date. It is a messenger and vitally involved in translating genetic code from DNA to the ribosomes so that amino acids can be created.

There are three kinds of RNA: messenger RNA (mRNA) transfers the genetic code from the DNA in the nucleus out to the ribosomes in the cytoplasm. Ribosomal RNA (rRNA) provides the structure for the ribosomes. Finally, transfer RNA (tRNA) works during translation to bring the amino acids to the ribosome so that a polypeptide (an amino acid chain) can be built.

Transcription

Transcription is the stage of manufacturing in which the DNA gene sequence is copied so that an RNA molecule can be made. We’ll explain more shortly.

Translation

The second stage of protein synthesis is translation. At this point in the process, a mRNA (messenger RNA) molecule is “read” and the information is used by the ribosome to build a polypeptide.

Polypeptide

A polypeptide is a chain made up of amino acids.

Codon

Three nucleotides form a codon. This codon is then used to create amino acids.

RNA vs. DNA

It’s tempting to confuse RNA with DNA, but they’re very different, and it’s important to understand these differences. They are both made up of nucleotides, which are the basic units of nucleic acids (like DNA and RNA). These nucleotides contain a phosphate group, a nitrogenous base, and a 5-carbon sugar ribose.

Instead of DNA’s ribose, however, RNA uses deoxyribose, a different kind of sugar. Also, RNA is most often a single strand, while DNA is famously double-stranded. Finally, DNA contains thymine, while RNA uses uracil instead.

Chromosomes

DNA is found by the meter inside even minuscule cells. During replication, the masses of coiled DNA called chromatin (shaped thanks to proteins called histones) organize into what are called chromosomes.

Different types of cells (eukaryotes) have chromosomes in varying amounts. Humans, as you probably know, have 46 chromosomes, while dogs, for example, have 78.

Transcription and Translation

To best understand your protein synthesis worksheet, let’s cover the complete protein synthesis process. It starts with transcription. Special enzymes in the nucleus arrive to gently pull apart the DNA code needed, and RNA begins to transcribe or rewrite the genetic material.

During translation, the mRNA connects with the ribosome and its information is decoded again so that the correct sequence of amino acids will connect to form a polypeptide. It’s important to note here that the ribosome doesn’t make protein nor does it make amino acids. It simply instructs already-made amino acids to form the correct sequence.

The amino acids’ sequence determines its protein’s shape, function, and properties and it can do so thanks to the RNA’s four bases (all of which are nucleotides): adenine (A), cytosine (C), guanine (G), and uracil (U). A codon, as we explained earlier, is a combination of three of these bases in a specific order: UUC, for example.

Some codons tell the ribosome to start or stop (UAA, UAG, and UGA indicate stop) and the rest indicate specific amino acids.

Understanding the Codon Table

codon table by cabal edu, protein synthesis worksheet

Image Source: sabal.uscb.edu

The heart of protein synthesis (and what you’ll most likely see on a protein synthesis worksheet) is the codon table. It helps us work through translation to understand the amino acids the mRNA is prescribing. For example, if you want to know what the codon CAA translates to, you’ll use the first letter of the codon (C) to locate the corresponding row on the left side of the chart.

Next, use the second letter of the codon (A) to identify the corresponding column on the top of the chart. The box indicated includes four codons that began with C and A; if you’d like, you can simply identify your codon there, or you can use the right side of the chart to identify the corresponding order of the third letter in the codon (A).

Either way, the single amino acid for CAA is Gln (glutamine).

Mutations

Mutations sound scary, but don’t worry–we’re not talking about superheroes with latent power and plans for world domination. Instead, we’re talking about what happens when there’s a mistake in the transcription or translation process.

Mutations come in three forms: silent, missense, and nonsense. A mutation that is silent means that the amino acid will not be impacted during translation. Missense mutations mean that the single amino acid has been changed and a nonsense mutation ends prematurely.

How are Mutations Caused?

There are several different reasons a mutation may occur. If at least one base is added to a DNA sequence, this is referred to as an insertion. A deletion, however, occurs when at least one base has been removed from the DNA sequence.

Similarly, when a change is made to the codons so that the reading frame of the sequence is changed, the resulting mutation is called a frameshift mutation. For example, a mRNA codon that reads AUG-AUA-CGG-AAU might experience an insertion of a T in the DNA sequence.

This frameshift mutation leads to a new codon: AUG-UAC-GGA-AU.

If we utilize the codon chart, we find that the polypeptide mutates from Met-Ile-Arg-Asn to Met-Tyr-Gly.

Common Misconceptions About Mutations

Something important to note is that sometimes the DNA sequence experiences an insertion or deletion of three nucleotides in a row. This doesn’t cause a frameshift mutation. Instead, it will just impact whether or not the deleted or inserted amino acids are added or not.

This can cause a dramatic change in the outcome of the polypeptide.

Another common misconception is that a mutation is always dramatic. While this is sometimes the case, mutations are common and provide the genetic variation we so appreciate in life. Many mutations have little to no impact on life, and some mutations even create good changes.

It’s a very limited number of mutations that survive to be problematic.

 

What Exactly Are Genes?

 

A gene is a short section of DNA that acts as an instruction manual for our bodies. DNA is found inside almost every cell in the body.

Genes contain the instructions that tell cells to create new proteins via protein synthesis. Every gene carries certain instructions which make up who you are such as eye color, height, and hair color. Genes come in many different types and versions for each feature. For example, one variant of a gene may contain instructions for blue eyes whereas another contains instructions for brown eyes. Genes are so small that there are around 20,000 inside each cell in the body. The entire sequence of your genes is named the genome.

 

How Do Genes Work?

 

Genes are responsible for telling each of your cells what to do and when to do it. They do this by making proteins. Why are proteins important? Well, our bodies are made up of proteins. Around 50% of a cell is some form of protein. Proteins are also responsible for many bodily functions such as digestion, immunity, circulation, motion, and communication between cells. These are made possible by the estimated 100,000 different proteins that are produced in the body.

Genes within your DNA don’t make proteins directly. Instead, enzymes read and copy the DNA code. The section of DNA that is to be copied gets unzipped by an enzyme which then uses that segment of DNA as a template to build a single-stranded molecule of ribonucleic acid. This ribonucleic acid then leaves the nucleus of the cell and enters the cytoplasm where ribosomes then translate the code to create the specific protein.

In certain genes, not all of the DNA sequence is used to make a protein. The section of DNA that is non-coding is known as introns. The coding sections of DNA are called exons.

 

The Structure of DNA

 

DNA is made up of pairs of nucleotides on a phosphate and sugar backbone. There are four different nucleotides: thymine, cytosine, guanine, and adenine. Each of the types of nucleotides only pairs with one other type. Hydrogen bonds connect to those nucleotide pairs. The sugar and phosphate backbone, along with the nucleotide pairs form a ladder-like structure that twists to form the double helix structure of DNA. Each side of this ladder shape is known as a strand of DNA.

 

Nucleotides consist of a base, a phosphate group, and five carbon atoms. Each of the different types of nucleotide has a base with a different structure, however, all the bases contain nitrogen. The four bases can be split into two groups. These are pyrimidine bases and purine bases. Pyrimidine bases are small and have one six-atom ring. Purine bases are larger and are made up of a six-atom ring plus a five-atom ring which are joined by two shared atoms. Thymine and cytosine are pyrimidine bases and adenine and guanine are purine bases.

 

Pyrimidine bases bond to purine bases because the shapes of these bases allow hydrogen bonds to form between them. The base pairing rules states that guanine pairs only with cytosine and adenine pairs only with thymine. This rule is known as complementary base pairing. Three hydrogen bonds form between a guanine and cytosine pair whereas only two hydrogen bonds form between an adenine and thymine base pair.

 

Protein Synthesis Worksheet Practice

It’s helpful to utilize practice protein synthesis worksheets. To help you, here’s a list of questions–and their answers–that you’re likely to find on tests, worksheets, and protein synthesis projects:

  1. During translation, which RNA carries amino acids to the ribosome? (transfer RNA or tRNA)
  2. Is DNA made with uracil or thymine? (thymine)
  3. In which part of the cell does transcription happen? (in the nucleus)
  4. Which RNA carries the genetic code to the ribosomes from the DNA? (messenger RNA or mRNA)
  5. What is the central dogma of biology? (DNA → RNA → protein)
  6. What are the building blocks of proteins? (amino acids)
  7. What are the three causes of mutations? (insertion, deletion, and frameshift)
  8. What is a codon? (three nucleotides)
  9. What are the three differences between DNA and RNA? (RNA uses deoxyribose instead of ribose, is single-stranded instead of double-stranded, and contains uracil instead of thymine)
  10. In what phase is tRNA molecules used? (translation)
  11. Does protein synthesis build protein? (no; protein synthesis builds amino acids)
  12. What are polypeptides? (chains of amino acids)
  13. What do codons do? (indicate the specific amino acid and in what order, and indicate when to stop and start the amino acid chain)
  14. Which leaves the nucleus: DNA or RNA? (RNA)
  15. What are the three kinds of mutations? (silent, missense, and nonsense)
  16. Which codons indicate stop? (refer to the codon chart for the answer; UAA, UAG, and UGA)
  17. What does chromatin organize into during replication? (chromosomes)

Practice with the Codon Chart

Another great way to increase your knowledge of protein synthesis and better prepare for protein synthesis worksheets is to practice with the codon chart. You can find the solutions in parenthesis after the example:

  1. CUU-CGU-AAU-UGG-AAG (leu-arg-asn-trp-lys)
  2. ACU-ACA-AGU-UGC-UUU (thr-thr-ser-cys-phe)
  3. AAC-AAG-GUC-GUC-AGG (asn-lys-val-ile-arg)

Protein synthesis is a complex, highly tuned process that enables life to flourish. Understanding it, from the DNA to the RNA to the amino acids, gives us a better appreciation for life itself. Use our protein synthesis worksheet practice questions to help you learn the ins and outs of protein synthesis and remember the informaion.